Suppr超能文献

母乳喂养对婴儿胃肠道感染的影响:一种针对聚类纵向数据的靶向最大似然法

EFFECT OF BREASTFEEDING ON GASTROINTESTINAL INFECTION IN INFANTS: A TARGETED MAXIMUM LIKELIHOOD APPROACH FOR CLUSTERED LONGITUDINAL DATA.

作者信息

Schnitzer Mireille E, van der Laan Mark J, Moodie Erica E M, Platt Robert W

机构信息

Université de Montréal.

University of California, Berkeley.

出版信息

Ann Appl Stat. 2014 Jun;8(2):703-725. doi: 10.1214/14-aoas727.

Abstract

The PROmotion of Breastfeeding Intervention Trial (PROBIT) cluster-randomized a program encouraging breastfeeding to new mothers in hospital centers. The original studies indicated that this intervention successfully increased duration of breastfeeding and lowered rates of gastrointestinal tract infections in newborns. Additional scientific and popular interest lies in determining the causal effect of longer breastfeeding on gastrointestinal infection. In this study, we estimate the expected infection count under various lengths of breastfeeding in order to estimate the effect of breastfeeding duration on infection. Due to the presence of baseline and time-dependent confounding, specialized "causal" estimation methods are required. We demonstrate the double-robust method of Targeted Maximum Likelihood Estimation (TMLE) in the context of this application and review some related methods and the adjustments required to account for clustering. We compare TMLE (implemented both parametrically and using a data-adaptive algorithm) to other causal methods for this example. In addition, we conduct a simulation study to determine (1) the effectiveness of controlling for clustering indicators when cluster-specific confounders are unmeasured and (2) the importance of using data-adaptive TMLE.

摘要

母乳喂养促进干预试验(PROBIT)在医院中心对鼓励新妈妈进行母乳喂养的项目进行了整群随机分组。最初的研究表明,这种干预成功地延长了母乳喂养的时长,并降低了新生儿胃肠道感染的发生率。更多的科学及大众关注在于确定更长时间的母乳喂养对胃肠道感染的因果效应。在本研究中,我们估计了在不同母乳喂养时长下的预期感染数,以便评估母乳喂养时长对感染的影响。由于存在基线和随时间变化的混杂因素,需要采用专门的“因果”估计方法。我们在此应用场景中展示了靶向最大似然估计(TMLE)的双稳健方法,并回顾了一些相关方法以及为考虑聚类而需要进行的调整。针对此示例,我们将TMLE(通过参数化实现以及使用数据自适应算法实现)与其他因果方法进行了比较。此外,我们进行了一项模拟研究,以确定(1)在未测量特定聚类混杂因素时控制聚类指标的有效性,以及(2)使用数据自适应TMLE的重要性。

相似文献

2
Targeted Maximum Likelihood Estimation for Causal Inference in Observational Studies.
Am J Epidemiol. 2017 Jan 1;185(1):65-73. doi: 10.1093/aje/kww165. Epub 2016 Dec 9.
4
Collaborative double robust targeted maximum likelihood estimation.
Int J Biostat. 2010 May 17;6(1):Article 17. doi: 10.2202/1557-4679.1181.
6
Double robust and efficient estimation of a prognostic model for events in the presence of dependent censoring.
Biostatistics. 2016 Jan;17(1):165-77. doi: 10.1093/biostatistics/kxv028. Epub 2015 Jul 29.
8
Marginal Structural Models with Counterfactual Effect Modifiers.
Int J Biostat. 2018 Jun 8;14(1):/j/ijb.2018.14.issue-1/ijb-2018-0039/ijb-2018-0039.xml. doi: 10.1515/ijb-2018-0039.
9

引用本文的文献

1
Causal inference in randomized trials with partial clustering.
Clin Trials. 2025 May 2:17407745251333779. doi: 10.1177/17407745251333779.
2
EXPOSURE EFFECTS ON COUNT OUTCOMES WITH OBSERVATIONAL DATA, WITH APPLICATION TO INCARCERATED WOMEN.
Ann Appl Stat. 2024 Sep;18(3):2147-2165. doi: 10.1214/24-aoas1874. Epub 2024 Aug 5.
3
History-restricted marginal structural model and latent class growth analysis of treatment trajectories for a time-dependent outcome.
Int J Biostat. 2024 Aug 12;20(2):467-490. doi: 10.1515/ijb-2023-0116. eCollection 2024 Nov 1.
4
Defining and estimating effects in cluster randomized trials: A methods comparison.
Stat Med. 2023 Aug 30;42(19):3443-3466. doi: 10.1002/sim.9813. Epub 2023 Jun 12.
5
Human Milk Oligosaccharides Impact Cellular and Inflammatory Gene Expression and Immune Response.
Front Immunol. 2022 Jun 29;13:907529. doi: 10.3389/fimmu.2022.907529. eCollection 2022.
6
Anemia and adverse outcomes in pregnancy: subgroup analysis of the CLIP cluster-randomized trial in India.
BMC Pregnancy Childbirth. 2022 May 13;22(1):407. doi: 10.1186/s12884-022-04714-y.
8
A potential outcomes approach to defining and estimating gestational age-specific exposure effects during pregnancy.
Stat Methods Med Res. 2022 Feb;31(2):300-314. doi: 10.1177/09622802211065158. Epub 2022 Jan 5.
9
Modeling treatment effect modification in multidrug-resistant tuberculosis in an individual patientdata meta-analysis.
Stat Methods Med Res. 2022 Apr;31(4):689-705. doi: 10.1177/09622802211046383. Epub 2021 Dec 13.
10
Multifunctional Benefits of Prevalent HMOs: Implications for Infant Health.
Nutrients. 2021 Sep 25;13(10):3364. doi: 10.3390/nu13103364.

本文引用的文献

1
2
A general implementation of TMLE for longitudinal data applied to causal inference in survival analysis.
Int J Biostat. 2012 Sep 18;8(1):/j/ijb.2012.8.issue-1/1557-4679.1334/1557-4679.1334.xml. doi: 10.1515/1557-4679.1334.
3
Targeted maximum likelihood estimation for marginal time-dependent treatment effects under density misspecification.
Biostatistics. 2013 Jan;14(1):1-14. doi: 10.1093/biostatistics/kxs024. Epub 2012 Jul 12.
5
Targeted maximum likelihood based causal inference: Part I.
Int J Biostat. 2010;6(2):Article 2. doi: 10.2202/1557-4679.1211.
6
Targeted maximum likelihood estimation of the parameter of a marginal structural model.
Int J Biostat. 2010;6(2):Article 19. doi: 10.2202/1557-4679.1238. Epub 2010 Apr 15.
7
A targeted maximum likelihood estimator of a causal effect on a bounded continuous outcome.
Int J Biostat. 2010;6(1):Article 26. doi: 10.2202/1557-4679.1260. Epub 2010 Aug 1.
8
Breastfeeding and infant size: evidence of reverse causality.
Am J Epidemiol. 2011 May 1;173(9):978-83. doi: 10.1093/aje/kwq495. Epub 2011 Mar 23.
9
Implementation of G-computation on a simulated data set: demonstration of a causal inference technique.
Am J Epidemiol. 2011 Apr 1;173(7):731-8. doi: 10.1093/aje/kwq472. Epub 2011 Mar 16.
10
Diagnosing and responding to violations in the positivity assumption.
Stat Methods Med Res. 2012 Feb;21(1):31-54. doi: 10.1177/0962280210386207. Epub 2010 Oct 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验