Schnitzer Mireille E, van der Laan Mark J, Moodie Erica E M, Platt Robert W
Université de Montréal.
University of California, Berkeley.
Ann Appl Stat. 2014 Jun;8(2):703-725. doi: 10.1214/14-aoas727.
The PROmotion of Breastfeeding Intervention Trial (PROBIT) cluster-randomized a program encouraging breastfeeding to new mothers in hospital centers. The original studies indicated that this intervention successfully increased duration of breastfeeding and lowered rates of gastrointestinal tract infections in newborns. Additional scientific and popular interest lies in determining the causal effect of longer breastfeeding on gastrointestinal infection. In this study, we estimate the expected infection count under various lengths of breastfeeding in order to estimate the effect of breastfeeding duration on infection. Due to the presence of baseline and time-dependent confounding, specialized "causal" estimation methods are required. We demonstrate the double-robust method of Targeted Maximum Likelihood Estimation (TMLE) in the context of this application and review some related methods and the adjustments required to account for clustering. We compare TMLE (implemented both parametrically and using a data-adaptive algorithm) to other causal methods for this example. In addition, we conduct a simulation study to determine (1) the effectiveness of controlling for clustering indicators when cluster-specific confounders are unmeasured and (2) the importance of using data-adaptive TMLE.
母乳喂养促进干预试验(PROBIT)在医院中心对鼓励新妈妈进行母乳喂养的项目进行了整群随机分组。最初的研究表明,这种干预成功地延长了母乳喂养的时长,并降低了新生儿胃肠道感染的发生率。更多的科学及大众关注在于确定更长时间的母乳喂养对胃肠道感染的因果效应。在本研究中,我们估计了在不同母乳喂养时长下的预期感染数,以便评估母乳喂养时长对感染的影响。由于存在基线和随时间变化的混杂因素,需要采用专门的“因果”估计方法。我们在此应用场景中展示了靶向最大似然估计(TMLE)的双稳健方法,并回顾了一些相关方法以及为考虑聚类而需要进行的调整。针对此示例,我们将TMLE(通过参数化实现以及使用数据自适应算法实现)与其他因果方法进行了比较。此外,我们进行了一项模拟研究,以确定(1)在未测量特定聚类混杂因素时控制聚类指标的有效性,以及(2)使用数据自适应TMLE的重要性。