Suppr超能文献

多样本调整 U 统计量,用于调整混杂协变量。

Multisample adjusted U-statistics that account for confounding covariates.

机构信息

Division of Reproductive Health, Centers for Disease Control and Prevention, Atlanta, Georgia, USA.

Department of Bioinformatics and Biostatistics, SPHIS, University of Louisville, Louisville, Kentucky, USA.

出版信息

Stat Med. 2018 Oct 15;37(23):3357-3372. doi: 10.1002/sim.7825. Epub 2018 Jun 19.

Abstract

Multisample U-statistics encompass a wide class of test statistics that allow the comparison of 2 or more distributions. U-statistics are especially powerful because they can be applied to both numeric and nonnumeric data, eg, ordinal and categorical data where a pairwise similarity or distance-like measure between categories is available. However, when comparing the distribution of a variable across 2 or more groups, observed differences may be due to confounding covariates. For example, in a case-control study, the distribution of exposure in cases may differ from that in controls entirely because of variables that are related to both exposure and case status and are distributed differently among case and control participants. We propose to use individually reweighted data (ie, using the stratification score for retrospective data or the propensity score for prospective data) to construct adjusted U-statistics that can test the equality of distributions across 2 (or more) groups in the presence of confounding covariates. Asymptotic normality of our adjusted U-statistics is established and a closed form expression of their asymptotic variance is presented. The utility of our approach is demonstrated through simulation studies, as well as in an analysis of data from a case-control study conducted among African-Americans, comparing whether the similarity in haplotypes (ie, sets of adjacent genetic loci inherited from the same parent) occurring in a case and a control participant differs from the similarity in haplotypes occurring in 2 control participants.

摘要

多样本 U 统计量包含广泛的一类检验统计量,可用于比较 2 个或多个分布。U 统计量特别强大,因为它们可应用于数值和非数值数据,例如有序和分类数据,其中类别之间存在成对相似性或类似距离的度量。然而,当比较变量在 2 个或更多组之间的分布时,观察到的差异可能是由于混杂协变量引起的。例如,在病例对照研究中,病例组的暴露分布可能与对照组完全不同,这完全是因为与暴露和病例状态都相关的变量,并且在病例和对照参与者中分布不同。我们建议使用个体加权数据(即使用回顾性数据的分层得分或前瞻性数据的倾向得分)来构建调整后的 U 统计量,以在存在混杂协变量的情况下检验 2 个(或更多)组之间的分布是否相等。我们的调整后 U 统计量的渐近正态性得到了确立,并提出了它们渐近方差的闭式表达式。通过模拟研究以及在对非洲裔美国人进行的病例对照研究数据的分析中,证明了我们方法的实用性,比较了病例和对照参与者中发生的单倍型(即从同一父母遗传的一组相邻遗传位点)的相似性是否与 2 个对照参与者中发生的单倍型的相似性不同。

相似文献

4
Nonlinear tests for genomewide association studies.全基因组关联研究的非线性检验
Genetics. 2006 Nov;174(3):1529-38. doi: 10.1534/genetics.106.060491. Epub 2006 Jul 2.
6
Haplotype sharing analysis using mantel statistics.使用曼特尔统计法进行单倍型共享分析。
Hum Hered. 2005;59(2):67-78. doi: 10.1159/000085221. Epub 2005 Apr 18.
9
Genetic susceptibility to multiple sclerosis in African Americans.非裔美国人多发性硬化症的遗传易感性。
PLoS One. 2021 Aug 9;16(8):e0254945. doi: 10.1371/journal.pone.0254945. eCollection 2021.

本文引用的文献

10
Marginal structural models as a tool for standardization.边际结构模型作为一种标准化工具。
Epidemiology. 2003 Nov;14(6):680-6. doi: 10.1097/01.EDE.0000081989.82616.7d.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验