Suppr超能文献

评估通量信号代谢物果糖-1,6-二磷酸与细菌转录因子 CggR 和 Cra 之间的相互作用。

Assessment of the interaction between the flux-signaling metabolite fructose-1,6-bisphosphate and the bacterial transcription factors CggR and Cra.

机构信息

Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands.

Department of Cell Biology, Faculty of Biology, Complutense University of Madrid, José Antonio Nováis 12, 28040, Madrid, Spain.

出版信息

Mol Microbiol. 2018 Aug;109(3):278-290. doi: 10.1111/mmi.14008.

Abstract

Bacteria regulate cell physiology in response to extra- and intracellular cues. Recent work showed that metabolic fluxes are reported by specific metabolites, whose concentrations correlate with flux through the respective metabolic pathway. An example of a flux-signaling metabolite is fructose-1,6-bisphosphate (FBP). In turn, FBP was proposed to allosterically regulate master regulators of carbon metabolism, Cra in Escherichia coli and CggR in Bacillus subtilis. However, a number of questions on the FBP-mediated regulation of these transcription factors is still open. Here, using thermal shift assays and microscale thermophoresis we demonstrate that FBP does not bind Cra, even at millimolar physiological concentration, and with electrophoretic mobility shift assays we also did not find FBP-mediated impairment of Cra's affinity for its operator site, while fructose-1-phosphate does. Furthermore, we show for the first time that FBP binds CggR within the millimolar physiological concentration range of the metabolite, and decreases DNA-binding activity of this transcription factor. Molecular docking experiments only identified a single FBP binding site CggR. Our results provide the long thought after clarity with regards to regulation of Cra activity in E. coli and reveals that E. coli and B. subtilis use distinct cellular mechanism to transduce glycolytic flux signals into transcriptional regulation.

摘要

细菌会根据细胞内外的信号来调节细胞生理机能。最近的研究表明,代谢通量可以通过特定的代谢物来报告,这些代谢物的浓度与相应代谢途径中的通量相关。代谢物果糖-1,6-二磷酸(FBP)就是一个通量信号代谢物的例子。反过来,FBP 被提议通过别构调节碳代谢的主要调节剂,即在大肠杆菌中为 Cra,在枯草芽孢杆菌中为 CggR。然而,关于 FBP 对这些转录因子的调节作用,仍有许多问题尚未解决。在这里,我们使用热位移分析和微尺度热泳动实验表明,即使在生理浓度的毫摩尔范围内,FBP 也不会与 Cra 结合,而且我们也没有发现 FBP 介导的 Cra 与其操纵子位点亲和力的损害,而果糖-1-磷酸则可以。此外,我们首次表明,FBP 在代谢物的毫摩尔生理浓度范围内与 CggR 结合,并降低了该转录因子的 DNA 结合活性。分子对接实验仅鉴定出 CggR 的一个 FBP 结合位点。我们的研究结果为大肠杆菌中 Cra 活性的调节提供了人们长期以来期待的明确性,并揭示了大肠杆菌和枯草芽孢杆菌使用不同的细胞机制将糖酵解通量信号转导为转录调控。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验