Suppr超能文献

利用横断面流行率数据推断病原体类型间的相互作用:预测类型替换的机会和陷阱。

Inferring Pathogen Type Interactions Using Cross-sectional Prevalence Data: Opportunities and Pitfalls for Predicting Type Replacement.

机构信息

From the Center for Infectious Diseases Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands.

Department of Medical Statistics and Bioinformatics, Leiden University Medical Center, Leiden, The Netherlands.

出版信息

Epidemiology. 2018 Sep;29(5):666-674. doi: 10.1097/EDE.0000000000000870.

Abstract

BACKGROUND

Many multivalent vaccines target only a subset of all pathogenic types. If vaccine and nonvaccine types compete, vaccination may lead to type replacement. The plausibility of type replacement has been assessed using the odds ratio (OR) of co-infections in cross-sectional prevalence data, with OR > 1 being interpreted as low risk of type replacement. The usefulness of the OR as a predictor for type replacement is debated, as it lacks a theoretical justification, and there is no framework explaining under which assumptions the OR predicts type replacement.

METHODS

We investigate the values that the OR can take based on deterministic S usceptible- I infected- S usceptible and S usceptible- Infected- Recovered- S usceptible multitype transmission models. We consider different mechanisms of type interactions and explore parameter values ranging from synergistic to competitive interactions.

RESULTS

We find that OR > 1 might mask competition because of confounding due to unobserved common risk factors and cross-immunity, as indicated by earlier studies. We prove mathematically that unobserved common risk factors lead to an elevation of the OR, and present an intuitive explanation why cross-immunity increases the OR. We find that OR < 1 is predictive for type replacement in the absence of immunity. With immunity, OR < 1 remains predictive under biologically reasonable assumptions of unidirectional interactions during infection, and an absence of immunity-induced synergism.

CONCLUSIONS

Using the OR in cross-sectional data to predict type replacement is justified, but is only unambiguous under strict assumptions. An accurate prediction of type replacement requires pathogen-specific knowledge on common risk factors and cross-immunity.

摘要

背景

许多多价疫苗仅针对所有致病性类型的一部分。如果疫苗和非疫苗类型相互竞争,接种疫苗可能会导致类型替代。使用横断面流行数据中的合并感染的优势比(OR)评估了类型替代的可能性,OR>1 被解释为类型替代的风险较低。由于缺乏理论依据,并且没有解释在哪些假设下 OR 可以预测类型替代的框架,因此 OR 作为类型替代预测因子的有用性存在争议。

方法

我们根据确定性 S 易感者- I 感染者- S 易感者和 S 易感者-感染者-恢复者- S 易感者多型传播模型,研究了 OR 可以取的值。我们考虑了不同类型相互作用的机制,并探索了从协同作用到竞争作用的不同参数值。

结果

我们发现,由于未观察到的共同危险因素和交叉免疫引起的混杂,OR>1 可能掩盖了竞争,正如早期研究表明的那样。我们从数学上证明了未观察到的共同危险因素导致 OR 升高,并提出了一个直观的解释,即交叉免疫如何增加 OR。我们发现,在没有免疫的情况下,OR<1 可预测类型替代。在感染期间存在单向相互作用和不存在免疫诱导的协同作用的合理生物学假设下,具有免疫力时,OR<1 仍然可预测类型替代。

结论

在横断面数据中使用 OR 来预测类型替代是合理的,但仅在严格假设下才是明确的。准确预测类型替代需要针对常见危险因素和交叉免疫的病原体特异性知识。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验