Suppr超能文献

将多种类型的相互作用纳入人乳头瘤病毒疫苗接种后类型替代的实用预测因子中。

Capturing multiple-type interactions into practical predictors of type replacement following human papillomavirus vaccination.

机构信息

1 Centre for Infectious Diseases Control, National Institute for Public Health and the Environment (RIVM), 3720 BA Bilthoven , The Netherlands.

2 Department of Medical Statistics and Bioinformatics, Leiden University Medical Center , Leiden , The Netherlands.

出版信息

Philos Trans R Soc Lond B Biol Sci. 2019 May 27;374(1773):20180298. doi: 10.1098/rstb.2018.0298.

Abstract

Current HPV vaccines target a subset of the oncogenic human papillomavirus (HPV) types. If HPV types compete during infection, vaccination may trigger replacement by the non-targeted types. Existing approaches to assess the risk of type replacement have focused on detecting competitive interactions between pairs of vaccine and non-vaccine types. However, methods to translate any inferred pairwise interactions into predictors of replacement have been lacking. In this paper, we develop practical predictors of type replacement in a multi-type setting, readily estimable from pre-vaccination longitudinal or cross-sectional prevalence data. The predictors we propose for replacement by individual non-targeted types take the form of weighted cross-hazard ratios of acquisition versus clearance, or aggregate odds ratios of coinfection with the vaccine types. We elucidate how the hazard-based predictors incorporate potentially heterogeneous direct and indirect type interactions by appropriately weighting type-specific hazards and show when they are equivalent to the odds-based predictors. Additionally, pooling type-specific predictors proves to be useful for predicting increase in the overall non-vaccine-type prevalence. Using simulations, we demonstrate good performance of the predictors under different interaction structures. We discuss potential applications and limitations of the proposed methodology in predicting type replacement, as compared to existing approaches. This article is part of the theme issue 'Silent cancer agents: multi-disciplinary modelling of human DNA oncoviruses'.

摘要

目前的 HPV 疫苗针对致癌型人乳头瘤病毒(HPV)的一部分亚型。如果 HPV 类型在感染过程中具有竞争性,那么接种疫苗可能会触发非目标类型的替代。现有的评估类型替代风险的方法侧重于检测疫苗和非疫苗类型之间的成对竞争相互作用。然而,将任何推断出的成对相互作用转化为替代预测因子的方法一直缺乏。在本文中,我们在多类型环境中开发了针对特定类型替代的实用预测因子,这些预测因子可从疫苗接种前的纵向或横断面流行率数据中轻松估算。我们提出的针对个别非靶向类型替代的预测因子采用了获得与清除的加权交叉风险比的形式,或与疫苗类型合并感染的综合优势比。我们阐明了基于风险的预测因子如何通过适当加权特定类型的风险来纳入潜在异质的直接和间接类型相互作用,并展示了它们何时等同于基于优势的预测因子。此外,汇总特定类型的预测因子对于预测总体非疫苗类型的流行率增加非常有用。通过模拟,我们展示了在不同的相互作用结构下,预测因子的良好性能。我们讨论了与现有方法相比,拟议方法在预测类型替代方面的潜在应用和局限性。本文是“沉默的致癌因子:人类 DNA 致癌病毒的多学科建模”主题特刊的一部分。

相似文献

引用本文的文献

本文引用的文献

8
Exposing the diversity of multiple infection patterns.揭示多种感染模式的多样性。
J Theor Biol. 2017 Apr 21;419:278-289. doi: 10.1016/j.jtbi.2017.02.011. Epub 2017 Feb 11.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验