Suppr超能文献

从共检测流行率数据推断病毒-病毒相互作用的陷阱:在流感和 SARS-CoV-2 中的应用。

The pitfalls of inferring virus-virus interactions from co-detection prevalence data: application to influenza and SARS-CoV-2.

机构信息

Max Planck Institute for Infection Biology, Infectious Disease Epidemiology group, Charitéplatz 1, Campus Charité Mitte, 10117 Berlin, Germany.

Laboratoire de Virologie des HCL, IAI, CNR des virus à transmission respiratoire (dont la grippe) Hôpital de la Croix-Rousse F-69317, Lyon cedex 04, France.

出版信息

Proc Biol Sci. 2022 Jan 12;289(1966):20212358. doi: 10.1098/rspb.2021.2358.

Abstract

There is growing experimental evidence that many respiratory viruses-including influenza and SARS-CoV-2-can interact, such that their epidemiological dynamics may not be independent. To assess these interactions, standard statistical tests of independence suggest that the prevalence ratio-defined as the ratio of co-infection prevalence to the product of single-infection prevalences-should equal unity for non-interacting pathogens. As a result, earlier epidemiological studies aimed to estimate the prevalence ratio from co-detection prevalence data, under the assumption that deviations from unity implied interaction. To examine the validity of this assumption, we designed a simulation study that built on a broadly applicable epidemiological model of co-circulation of two emerging or seasonal respiratory viruses. By focusing on the pair influenza-SARS-CoV-2, we first demonstrate that the prevalence ratio systematically underestimates the strength of interaction, and can even misclassify antagonistic or synergistic interactions that persist after clearance of infection. In a global sensitivity analysis, we further identify properties of viral infection-such as a high reproduction number or a short infectious period-that blur the interaction inferred from the prevalence ratio. Altogether, our results suggest that ecological or epidemiological studies based on co-detection prevalence data provide a poor guide to assess interactions among respiratory viruses.

摘要

越来越多的实验证据表明,许多呼吸道病毒——包括流感病毒和 SARS-CoV-2——可以相互作用,因此它们的流行病学动态可能不是独立的。为了评估这些相互作用,独立性的标准统计检验表明,对于非相互作用的病原体,共感染流行率与单感染流行率乘积的比值(定义为共感染流行率比)应该等于 1。因此,早期的流行病学研究旨在根据共检测流行率数据来估计流行率比,假设偏离 1 意味着存在相互作用。为了检验这一假设的有效性,我们设计了一项模拟研究,该研究基于两种新兴或季节性呼吸道病毒共同传播的广泛适用的流行病学模型。通过关注流感病毒-SARS-CoV-2 这一对,我们首先证明,流行率比系统地低估了相互作用的强度,甚至可能错误地将持续存在于感染清除后的拮抗或协同相互作用归类为相互作用。在一项全局敏感性分析中,我们进一步确定了病毒感染的特性——例如高繁殖数或短传染期——这些特性使从流行率比推断出的相互作用变得模糊。总的来说,我们的研究结果表明,基于共检测流行率数据的生态学或流行病学研究不能很好地评估呼吸道病毒之间的相互作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d54c/8753173/6e4498673d1e/rspb20212358f01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验