Unité d'Ecologie Systématique et Evolution, CNRS, Université Paris-Sud, AgroParisTech, Université Paris-Saclay, Orsay, France.
Mol Biol Evol. 2018 Sep 1;35(9):2198-2204. doi: 10.1093/molbev/msy121.
Endosymbiosis has been common all along eukaryotic evolution, providing opportunities for genomic and organellar innovation. Plastids are a prominent example. After the primary endosymbiosis of the cyanobacterial plastid ancestor, photosynthesis spread in many eukaryotic lineages via secondary endosymbioses involving red or green algal endosymbionts and diverse heterotrophic hosts. However, the number of secondary endosymbioses and how they occurred remain poorly understood. In particular, contrasting patterns of endosymbiotic gene transfer have been detected and subjected to various interpretations. In this context, accurate detection of endosymbiotic gene transfers is essential to avoid wrong evolutionary conclusions. We have assembled a strictly selected set of markers that provides robust phylogenomic evidence suggesting that nuclear genes involved in the function and maintenance of green secondary plastids in chlorarachniophytes and euglenids have unexpected mixed red and green algal origins. This mixed ancestry contrasts with the clear red algal origin of most nuclear genes carrying similar functions in secondary algae with red plastids.
内共生在整个真核生物进化过程中一直很常见,为基因组和细胞器的创新提供了机会。质体就是一个突出的例子。在蓝细菌质体祖先的主要内共生之后,光合作用通过涉及红藻或绿藻内共生体和各种异养宿主的二次内共生在许多真核生物谱系中传播。然而,二次内共生的数量以及它们是如何发生的仍然知之甚少。特别是,已经检测到并对不同的内共生基因转移模式进行了各种解释。在这种情况下,准确检测内共生基因转移对于避免错误的进化结论至关重要。我们已经组装了一组严格选择的标记,这些标记提供了强有力的系统基因组证据,表明参与绿藻二次质体功能和维持的核基因具有意想不到的红藻和绿藻混合起源。这种混合的祖先与大多数携带类似功能的核基因形成鲜明对比,这些基因在具有红质体的二次藻类中具有明确的红藻起源。