Suppr超能文献

通过 CRISPR/dCas9 介导的表观基因组编辑来逆转机械诱导的 DSP 表达。

Reversing Mechanoinductive DSP Expression by CRISPR/dCas9-mediated Epigenome Editing.

机构信息

1 Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama.

2 Department of Respiratory Medicine, The Second Xiangya Hospital, Central-South University, Changsha, Hunan, China; and.

出版信息

Am J Respir Crit Care Med. 2018 Sep 1;198(5):599-609. doi: 10.1164/rccm.201711-2242OC.

Abstract

RATIONALE

DSP (desmoplakin), the most abundant component of desmosomes, which maintain the mechanical integrity of epithelium, is a genome-wide association study-identified genetic risk locus in human idiopathic pulmonary fibrosis (IPF). Subjects with IPF express a significantly higher level of DSP than control subjects.

OBJECTIVES

Determine potential mechanisms by which DSP is regulated in lung fibrosis.

METHODS

Matrigel-coated soft and stiff polyacrylamide gels were made to simulate the stiffness of normal and fibrotic lungs. Quantitative chromatin immunoprecipitation and electrophoretic mobility shift assay were used to evaluate transcription factor binding to the DSP promoter. Targeted DNA methylation was achieved by CRISPR (clustered regularly interspaced short palindromic repeats)/dCas9 (deactivated CRISPR-associated protein-9 nuclease)-mediated Dnmt3A (DNA methyltransferase 3A) expression under the guidance of sequence-specific single guide RNAs.

MEASUREMENTS AND MAIN RESULTS

Stiff matrix promotes DSP gene expression in both human and rodent lung epithelial cells as compared with soft matrix. A conserved region in the proximal DSP promoter is hypermethylated under soft matrix conditions and becomes hypomethylated/demethylated under stiff matrix conditions. Demethylation of this conserved DSP promoter region is associated with transactivation of transcription factor EGR1 (early growth response protein 1), resulting in EGR1-dependent DSP overexpression. Targeted DNA methylation by CRISPR/dCas9/Dnmt3A-mediated epigenome editing blocks EGR1 binding to the DSP promoter and inhibits stiff matrix-induced DSP overexpression.

CONCLUSIONS

DSP is a matrix stiffness-regulated mechanosensitive gene. CRISPR/dCas9-Dnmt3A-mediated epigenome editing reverses DSP overexpression by reestablishment of the epigenetic control of DSP under the mechanically homeostatic environment. It provides a useful tool for investigations of the functional role of DSP in the pathogenesis of lung fibrosis.

摘要

理由

DSP(桥粒斑蛋白)是桥粒的最丰富成分,桥粒维持上皮组织的机械完整性,是人类特发性肺纤维化(IPF)全基因组关联研究确定的遗传风险位点。患有 IPF 的受试者表达的 DSP 水平明显高于对照受试者。

目的

确定 DSP 在肺纤维化中受调控的潜在机制。

方法

制作涂有基质胶的软质和硬质聚丙酰胺凝胶,以模拟正常和纤维化肺的硬度。使用定量染色质免疫沉淀和电泳迁移率变动分析来评估转录因子与 DSP 启动子的结合。通过 CRISPR(成簇规律间隔短回文重复)/dCas9(失活的 CRISPR 相关蛋白-9 核酸酶)介导的在序列特异性单指导 RNA 指导下表达 Dnmt3A(DNA 甲基转移酶 3A)来实现靶向 DNA 甲基化。

测量和主要结果

与软质基质相比,硬质基质可促进人源和啮齿动物肺上皮细胞中 DSP 基因的表达。在软质基质条件下,DSP 近端启动子的一个保守区域发生超甲基化,而在硬质基质条件下则发生去甲基化/低甲基化。该保守的 DSP 启动子区域的去甲基化与转录因子 EGR1(早期生长反应蛋白 1)的反式激活相关,导致 EGR1 依赖性的 DSP 过表达。CRISPR/dCas9/Dnmt3A 介导的表观基因组编辑通过靶向 DNA 甲基化来阻断 EGR1 结合到 DSP 启动子,并抑制硬质基质诱导的 DSP 过表达。

结论

DSP 是一种基质硬度调节的机械敏感基因。CRISPR/dCas9-Dnmt3A 介导的表观基因组编辑通过在机械稳态环境中重新建立 DSP 的表观遗传控制来逆转 DSP 过表达。它为研究 DSP 在肺纤维化发病机制中的功能作用提供了有用的工具。

相似文献

1
Reversing Mechanoinductive DSP Expression by CRISPR/dCas9-mediated Epigenome Editing.
Am J Respir Crit Care Med. 2018 Sep 1;198(5):599-609. doi: 10.1164/rccm.201711-2242OC.
2
Genome-Wide Association Study: Functional Variant rs2076295 Regulates Desmoplakin Expression in Airway Epithelial Cells.
Am J Respir Crit Care Med. 2020 Nov 1;202(9):1225-1236. doi: 10.1164/rccm.201910-1958OC.
3
Stabilization of Foxp3 expression by CRISPR-dCas9-based epigenome editing in mouse primary T cells.
Epigenetics Chromatin. 2017 May 8;10:24. doi: 10.1186/s13072-017-0129-1. eCollection 2017.
5
Desmoplakin Variants Are Associated with Idiopathic Pulmonary Fibrosis.
Am J Respir Crit Care Med. 2016 May 15;193(10):1151-60. doi: 10.1164/rccm.201509-1863OC.
6
Targeted DNA demethylation of the Fgf21 promoter by CRISPR/dCas9-mediated epigenome editing.
Sci Rep. 2020 Mar 20;10(1):5181. doi: 10.1038/s41598-020-62035-6.
7
A review on CRISPR/Cas-based epigenetic regulation in plants.
Int J Biol Macromol. 2022 Oct 31;219:1261-1271. doi: 10.1016/j.ijbiomac.2022.08.182. Epub 2022 Aug 31.
8
Protocol for Allele-Specific Epigenome Editing Using CRISPR/dCas9.
Methods Mol Biol. 2024;2842:179-192. doi: 10.1007/978-1-0716-4051-7_9.
10
Epigenome editing of the CFTR-locus for treatment of cystic fibrosis.
J Cyst Fibros. 2022 Jan;21(1):164-171. doi: 10.1016/j.jcf.2021.04.008. Epub 2021 May 25.

引用本文的文献

1
Ferroptosis in pulmonary fibrosis: pathogenesis and traditional Chinese medicine-driven therapeutic approaches.
Front Cell Dev Biol. 2025 Jul 18;13:1598924. doi: 10.3389/fcell.2025.1598924. eCollection 2025.
3
Genomic and molecular evidence that the lncRNA modulates Desmoplakin expression.
medRxiv. 2025 Mar 31:2025.03.29.25324867. doi: 10.1101/2025.03.29.25324867.
4
Matrix Stiffness-Mediated DNA Methylation in Endothelial Cells.
Cell Mol Bioeng. 2025 Jan 17;18(1):29-38. doi: 10.1007/s12195-024-00836-9. eCollection 2025 Feb.
5
Advances in CRISPR-Cas technology and its applications: revolutionising precision medicine.
Front Genome Ed. 2024 Dec 12;6:1509924. doi: 10.3389/fgeed.2024.1509924. eCollection 2024.
6
MST1 interactomes profiling across cell death in esophageal squamous cell carcinoma.
Med Rev (2021). 2024 Jun 14;4(6):531-543. doi: 10.1515/mr-2024-0031. eCollection 2024 Dec.
7
Breathing new life into the study of COPD with genes identified from genome-wide association studies.
Eur Respir Rev. 2024 May 29;33(172). doi: 10.1183/16000617.0019-2024. Print 2024 Apr 30.
8
Progress and Perspective of CRISPR-Cas9 Technology in Translational Medicine.
Adv Sci (Weinh). 2023 Sep;10(25):e2300195. doi: 10.1002/advs.202300195. Epub 2023 Jun 25.
9
A biomechanical view of epigenetic tumor regulation.
J Biol Phys. 2023 Sep;49(3):283-307. doi: 10.1007/s10867-023-09633-3. Epub 2023 Apr 1.
10
Epigenetics as a versatile regulator of fibrosis.
J Transl Med. 2023 Mar 2;21(1):164. doi: 10.1186/s12967-023-04018-5.

本文引用的文献

1
Treatment of autosomal dominant hearing loss by in vivo delivery of genome editing agents.
Nature. 2018 Jan 11;553(7687):217-221. doi: 10.1038/nature25164. Epub 2017 Dec 20.
2
In Vivo Target Gene Activation via CRISPR/Cas9-Mediated Trans-epigenetic Modulation.
Cell. 2017 Dec 14;171(7):1495-1507.e15. doi: 10.1016/j.cell.2017.10.025. Epub 2017 Dec 7.
3
4
Systematic identification of regulatory variants associated with cancer risk.
Genome Biol. 2017 Oct 23;18(1):194. doi: 10.1186/s13059-017-1322-z.
5
Enhanced proofreading governs CRISPR-Cas9 targeting accuracy.
Nature. 2017 Oct 19;550(7676):407-410. doi: 10.1038/nature24268. Epub 2017 Sep 20.
7
Editing DNA Methylation in the Mammalian Genome.
Cell. 2016 Sep 22;167(1):233-247.e17. doi: 10.1016/j.cell.2016.08.056.
8
Tunable Crosslinked Cell-Derived Extracellular Matrix Guides Cell Fate.
Macromol Biosci. 2016 Nov;16(11):1723-1734. doi: 10.1002/mabi.201600280. Epub 2016 Aug 25.
10
Repurposing the CRISPR-Cas9 system for targeted DNA methylation.
Nucleic Acids Res. 2016 Jul 8;44(12):5615-28. doi: 10.1093/nar/gkw159. Epub 2016 Mar 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验