Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milan, Italy.
Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT, USA.
EMBO J. 2018 Aug 15;37(16). doi: 10.15252/embj.201798588. Epub 2018 Jun 19.
Homologous recombination is triggered by nucleolytic degradation (resection) of DNA double-strand breaks (DSBs). DSB resection requires the Mre11-Rad50-Xrs2 (MRX) complex, which promotes the activity of Exo1 nuclease through a poorly understood mechanism. Here, we describe the Mre11-R10T mutant variant that accelerates DSB resection compared to wild-type Mre11 by potentiating Exo1-mediated processing. This increased Exo1 resection activity leads to a decreased association of the Ku complex to DSBs and an enhanced DSB resection in G1, indicating that Exo1 has a direct function in preventing Ku association with DSBs. Molecular dynamics simulations show that rotation of the Mre11 capping domains is able to induce unwinding of double-strand DNA (dsDNA). The R10T substitution causes altered orientation of the Mre11 capping domain that leads to persistent melting of the dsDNA end. We propose that MRX creates a specific DNA end structure that promotes Exo1 resection activity by facilitating the persistence of this nuclease on the DSB ends, uncovering a novel MRX function in DSB resection.
同源重组是由 DNA 双链断裂 (DSB) 的核酶降解 (切除) 触发的。DSB 切除需要 Mre11-Rad50-Xrs2 (MRX) 复合物,该复合物通过一种尚不清楚的机制促进 Exo1 核酸酶的活性。在这里,我们描述了 Mre11-R10T 突变体变体,与野生型 Mre11 相比,通过增强 Exo1 介导的加工,加速 DSB 切除。这种增加的 Exo1 切除活性导致 Ku 复合物与 DSB 的结合减少,并增强 G1 中的 DSB 切除,表明 Exo1 在防止 Ku 与 DSB 结合方面具有直接功能。分子动力学模拟表明,Mre11 盖帽结构域的旋转能够诱导双链 DNA (dsDNA) 的解旋。R10T 取代导致 Mre11 盖帽结构域的取向改变,导致 dsDNA 末端的持续融化。我们提出,MRX 产生了一种特定的 DNA 末端结构,通过促进这种核酸酶在 DSB 末端的持续存在,从而促进 Exo1 切除活性,揭示了 MRX 在 DSB 切除中的一个新功能。