a State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute , Sichuan Agricultural University , Chengdu , China.
b School of Biosciences , University of Exeter , Exeter , UK.
Autophagy. 2018;14(9):1543-1561. doi: 10.1080/15548627.2018.1458171. Epub 2018 Aug 31.
Autophagy is essential for appressorium-mediated plant infection by Magnaporthe oryzae, the causal agent of rice blast disease and a major threat to global food security. The regulatory mechanism of pathogenicity-associated autophagy, however, remains largely unknown. Here, we report the identification and functional characterization of a plausible ortholog of yeast SNT2 in M. oryzae, which we term MoSNT2. Deletion mutants of MoSNT2 are compromised in autophagy homeostasis and display severe defects in autophagy-dependent fungal cell death and pathogenicity. These mutants are also impaired in infection structure development, conidiation, oxidative stress tolerance and cell wall integrity. MoSnt2 recognizes histone H3 acetylation through its PHD1 domain and thereby recruits the histone deacetylase complex, resulting in deacetylation of H3. MoSnt2 binds to promoters of autophagy genes MoATG6, 15, 16, and 22 to regulate their expression. In addition, MoTor controls MoSNT2 expression to regulate MoTor signaling which leads to autophagy and rice infection. Our study provides evidence of a direct link between MoSnt2 and MoTor signaling and defines a novel epigenetic mechanism by which MoSNT2 regulates infection-associated autophagy and plant infection by the rice blast fungus.
M. oryzae: Magnaporthe oryzae; S. cerevisiae: Saccharomyces cerevisiae; F. oxysporum: Fusarium oxysporum; U. maydis: Ustilago maydis; Compl.: complemented strains of ΔMosnt2 expressing MoSNT2-GFP; ATG: autophagy-related; HDAC: histone deacetylase complex; Tor: target of rapamycin kinase; MTOR: mechanistic target of rapamycin kinase in mammals; MoSnt2: DNA binding SaNT domain protein in M. oryzae; MoTor: target of rapamycin kinase in M. oryzae; MoAtg8: autophagy-related protein 8 in M. oryzae; MoHos2: hda one similar protein in M. oryzae; MoeIf4G: eukaryotic translation initiation factor 4 G in M. oryzae; MoRs2: ribosomal protein S2 in M. oryzae; MoRs3: ribosomal protein S3 in M. oryzae; MoIcl1: isocitrate lyase in M. oryzae; MoSet1: histone H3K4 methyltransferase in M. oryzae; Asd4: ascus development 4; Abl1: AMP-activated protein kinase β subunit-like protein; Tig1: TBL1-like gene required for invasive growth; Rpd3: reduced potassium dependency; KAT8: lysine (K) acetyltransferase 8; PHD: plant homeodomain; ELM2: Egl-27 and MTA1 homology 2; GFP: green fluorescent protein; YFP: yellow fluorescent protein; YFP: C-terminal fragment of YFP; YFP: N-terminal fragment of YFP; GST: glutathione S-transferase; bp: base pairs; DEGs: differentially expressed genes; CM: complete medium; MM-N: minimum medium minus nitrogen; CFW: calcofluor white; CR: congo red; DAPI: 4', 6-diamidino-2-phenylindole; BiFC: bimolecular fluorescence complementation; RT: reverse transcription; PCR: polymerase chain reaction; qPCR: quantitative polymerase chain reaction; RNAi: RNA interference; ChIP: chromatin immunoprecipitation.
自噬对于稻瘟病菌(Magnaporthe oryzae)介导的植物侵染至关重要,稻瘟病菌是稻瘟病的病原体,也是全球粮食安全的主要威胁。然而,与致病性相关的自噬的调控机制在很大程度上仍然未知。在这里,我们报告了在 M. oryzae 中酵母 SNT2 的一种合理同源物的鉴定和功能特征,我们将其称为 MoSnt2。MoSnt2 缺失突变体在自噬稳态中受到损害,并且在自噬依赖性真菌细胞死亡和致病性方面表现出严重缺陷。这些突变体在侵染结构发育、分生孢子形成、氧化应激耐受性和细胞壁完整性方面也受到损害。MoSnt2 通过其 PHD1 结构域识别组蛋白 H3 乙酰化,并由此招募组蛋白去乙酰化酶复合物,导致 H3 去乙酰化。MoSnt2 结合到自噬基因 MoATG6、15、16 和 22 的启动子上,以调节它们的表达。此外,MoTor 控制 MoSnt2 的表达,以调节 MoTor 信号,从而导致自噬和水稻感染。我们的研究提供了 MoSnt2 和 MoTor 信号之间直接联系的证据,并定义了一种新的表观遗传机制,通过该机制 MoSnt2 调节感染相关的自噬和稻瘟病菌对植物的感染。