Suppr超能文献

稻瘟病菌Magnaporthe oryzae侵染水稻过程中细胞程序性死亡的机制

Mechanisms of regulated cell death during plant infection by the rice blast fungus Magnaporthe oryzae.

作者信息

Wengler Matthew R, Talbot Nicholas J

机构信息

The Sainsbury Laboratory, University of East Anglia, Norwich, UK.

出版信息

Cell Death Differ. 2025 May;32(5):793-801. doi: 10.1038/s41418-024-01442-y. Epub 2025 Jan 10.

Abstract

Fungi are the most important group of plant pathogens, responsible for many of the world's most devastating crop diseases. One of the reasons they are such successful pathogens is because several fungi have evolved the capacity to breach the tough outer cuticle of plants using specialized infection structures called appressoria. This is exemplified by the filamentous ascomycete fungus Magnaporthe oryzae, causal agent of rice blast, one of the most serious diseases affecting rice cultivation globally. M. oryzae develops a pressurized dome-shaped appressorium that uses mechanical force to rupture the rice leaf cuticle. Appressoria form in response to the hydrophobic leaf surface, which requires the Pmk1 MAP kinase signalling pathway, coupled to a series of cell-cycle checkpoints that are necessary for regulated cell death of the fungal conidium and development of a functionally competent appressorium. Conidial cell death requires autophagy, which occurs within each cell of the spore, and is regulated by components of the cargo-independent autophagy pathway. This results in trafficking of the contents of all three cells to the incipient appressorium, which develops enormous turgor of up to 8.0 MPa, due to glycerol accumulation, and differentiates a thickened, melanin-lined cell wall. The appressorium then re-polarizes, re-orienting the actin and microtubule cytoskeleton to enable development of a penetration peg in a perpendicular orientation, that ruptures the leaf surface using mechanical force. Re-polarization requires septin GTPases which form a ring structure at the base of the appressorium, which delineates the point of plant infection, and acts as a scaffold for actin re-localization, enhances cortical rigidity, and forms a lateral diffusion barrier to focus polarity determinants that regulate penetration peg formation. Here we review the mechanism of regulated cell death in M. oryzae, which requires autophagy but may also involve ferroptosis. We critically evaluate the role of regulated cell death in appressorium morphogenesis and examine how it is initiated and regulated, both temporally and spatially, during plant infection. We then use this synopsis to present a testable model for control of regulated cell death during appressorium-dependent plant infection by the blast fungus.

摘要

真菌是最重要的植物病原体类群,引发了世界上许多最具毁灭性的作物病害。它们之所以成为如此成功的病原体,原因之一是一些真菌已经进化出利用称为附着胞的特殊感染结构突破植物坚韧外皮的能力。丝状子囊菌稻瘟病菌就是一个例子,它是稻瘟病的病原体,稻瘟病是全球影响水稻种植的最严重病害之一。稻瘟病菌会形成一个加压的圆顶形附着胞,利用机械力破坏水稻叶片的角质层。附着胞的形成是对叶片疏水表面的响应,这需要Pmk1丝裂原活化蛋白激酶信号通路,以及一系列细胞周期检查点,这些对于真菌分生孢子的程序性细胞死亡和功能健全的附着胞的发育是必需的。分生孢子的细胞死亡需要自噬,自噬发生在孢子的每个细胞内,并由非依赖货物的自噬途径的成分调节。这导致三个细胞的内容物都运输到初始附着胞,由于甘油积累,初始附着胞会产生高达8.0兆帕的巨大膨压,并分化出加厚的、有黑色素内衬的细胞壁。然后附着胞重新极化,重新定向肌动蛋白和微管细胞骨架,以便在垂直方向上形成一个穿透栓,利用机械力破坏叶片表面。重新极化需要隔膜鸟苷三磷酸酶,它们在附着胞底部形成一个环状结构,该结构划定了植物感染点,并作为肌动蛋白重新定位的支架,增强皮质刚性,并形成一个横向扩散屏障,以集中调节穿透栓形成的极性决定因素。在这里,我们综述了稻瘟病菌中程序性细胞死亡的机制,这需要自噬,但也可能涉及铁死亡。我们批判性地评估了程序性细胞死亡在附着胞形态发生中的作用,并研究了它在植物感染过程中如何在时间和空间上启动和调节。然后,我们利用这个概述提出一个可测试的模型,用于控制稻瘟病菌在依赖附着胞的植物感染过程中的程序性细胞死亡。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/61f3/12089313/e1c4945ee08b/41418_2024_1442_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验