Musculoskeletal Physiology Research Group, Sport, Health and Performance Enhancement Research Centre, School of Science and Technology, Nottingham Trent University, Clifton Campus, NG11 8NS, UK; Academic Diabetes, Endocrinology and Metabolism, Hull Medical School, University of Hull, Brocklehurst Building, Hull Royal Infirmary, Anlaby Road, Hull HU3 2RW, UK.
Musculoskeletal Physiology Research Group, Sport, Health and Performance Enhancement Research Centre, School of Science and Technology, Nottingham Trent University, Clifton Campus, NG11 8NS, UK; School of Sport and Exercise Science, University of Lincoln, LN6 7TS, UK.
Bone. 2018 Sep;114:181-188. doi: 10.1016/j.bone.2018.06.016. Epub 2018 Jun 19.
We aimed to explore the effects of low energy availability (EA)[15 kcal·kg lean body mass (LBM)·d] achieved by diet or exercise on bone turnover markers in active, eumenorrheic women.
By using a crossover design, ten eumenorrheic women (VO: 48.1 ± 3.3 ml·kg·min) completed all three, 3-day conditions in a randomised order: controlled EA (CON; 45 kcal·kgLBM·d), low EA through dietary energy restriction (D-RES; 15 kcal·kgLBM·d) and low EA through increasing exercise energy expenditure (E-RES; 15 kcal·kgLBM·d), during the follicular phase of three menstrual cycles. In CON, D-RES and E-RES, participants consumed diets providing 45, 15 and 45 kcal·kgLBM·d. In E-RES only, participants completed supervised running sessions (129 ± 10 min·d) at 70% of their VO that resulted in an exercise energy expenditure of 30 kcal·kg LBM·d. Blood samples were collected at baseline (BASE) and at the end of the 3-day period (D6) and analysed for bone turnover markers (β-CTX and P1NP), markers of calcium metabolism (PTH, albumin-adjusted Ca, Mg and PO) and hormones (IGF-1, T, insulin, leptin and 17β-oestradiol).
In D-RES, P1NP concentrations at D6 decreased by 17% (BASE: 54.8 ± 12.7 μg·L, D6: 45.2 ± 9.3 μg·L, P < 0.001, d = 0.91) and were lower than D6 concentrations in CON (D6: 52.5 ± 11.9 μg·L, P = 0.001). P1NP did not change significantly in E-RES (BASE: 55.3 ± 14.4 μg·L, D6: 50.9 ± 15.8 μg·L, P = 0.14). β-CTX concentrations did not change following D-RES (BASE: 0.48 ± 0.18 μg·L, D6: 0.55 ± 0.17 μg·L) or E-RES (BASE: 0.47 ± 0.24 μg·L, D6: 0.49 ± 0.18 μg·L) (condition × time interaction effect, P = 0.17). There were no significant differences in P1NP (P = 0.25) or β-CTX (P = 0.13) responses between D-RES and E-RES. Both conditions resulted in reductions in IGF-1 (-13% and - 23% from BASE in D-RES and E-RES, both P < 0.01) and leptin (-59% and - 61% from BASE in D-RES and E-RES, both P < 0.001); T decreased in D-RES only (-15% from BASE, P = 0.002) and PO concentrations decreased in E-RES only (-9%, P = 0.03).
Low EA achieved through dietary energy restriction resulted in a significant decrease in bone formation but no change in bone resorption, whereas low EA achieved through exercise energy expenditure did not significantly influence bone metabolism. Both low EA conditions elicited significant and similar changes in hormone concentrations.
本研究旨在探索通过饮食或运动实现低能量状态(EA)[15 kcal·kg 去脂体重(LBM)·d]对活跃、月经正常的女性骨转换标志物的影响。
通过交叉设计,10 名月经正常的女性(VO:48.1±3.3 ml·kg·min)按照随机顺序完成了所有三种 3 天的条件:对照 EA(CON;45 kcal·kgLBM·d)、通过饮食能量限制实现的低 EA(D-RES;15 kcal·kgLBM·d)和通过增加运动能量消耗实现的低 EA(E-RES;15 kcal·kgLBM·d),这三种条件分别在三个月经周期的卵泡期进行。在 CON、D-RES 和 E-RES 中,参与者摄入提供 45、15 和 45 kcal·kgLBM·d 的饮食。仅在 E-RES 中,参与者进行了 129±10 min·d 的监督跑步,强度为 VO 的 70%,导致运动能量消耗为 30 kcal·kg LBM·d。在基线(BASE)和 3 天期结束(D6)采集血样,并分析骨转换标志物(β-CTX 和 P1NP)、钙代谢标志物(PTH、白蛋白校正的 Ca、Mg 和 PO)和激素(IGF-1、T、胰岛素、瘦素和 17β-雌二醇)。
在 D-RES 中,P1NP 浓度在 D6 时下降了 17%(BASE:54.8±12.7 μg·L,D6:45.2±9.3 μg·L,P<0.001,d=0.91),且低于 CON 中 D6 时的浓度(D6:52.5±11.9 μg·L,P=0.001)。E-RES 中 P1NP 没有显著变化(BASE:55.3±14.4 μg·L,D6:50.9±15.8 μg·L,P=0.14)。D-RES 后(BASE:0.48±0.18 μg·L,D6:0.55±0.17 μg·L)或 E-RES 后(BASE:0.47±0.24 μg·L,D6:0.49±0.18 μg·L)β-CTX 浓度均无变化(条件×时间交互作用效应,P=0.17)。D-RES 和 E-RES 之间 P1NP(P=0.25)或 β-CTX(P=0.13)的反应没有显著差异。两种条件均导致 IGF-1 减少(D-RES 和 E-RES 中分别比 BASE 减少了 13%和 23%,均 P<0.01)和瘦素减少(D-RES 和 E-RES 中分别比 BASE 减少了 59%和 61%,均 P<0.001);D-RES 中 T 下降(与 BASE 相比减少了 15%,P=0.002),E-RES 中 PO 浓度下降(下降了 9%,P=0.03)。
通过饮食能量限制实现的低 EA 导致骨形成显著减少,但骨吸收没有变化,而通过运动能量消耗实现的低 EA 对骨代谢没有显著影响。两种低 EA 条件均引起了显著且相似的激素浓度变化。