Institute of Lightweight Design and Structural Biomechanics, TU Wien, 1060 Vienna, Austria.
Institute of Lightweight Design and Structural Biomechanics, TU Wien, 1060 Vienna, Austria; Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria.
J Mech Behav Biomed Mater. 2018 Sep;85:225-236. doi: 10.1016/j.jmbbm.2018.05.026. Epub 2018 May 17.
Mechanical assessment of biological materials and tissue-engineered scaffolds is increasingly focusing at lower length scale levels. Amongst other techniques, atomic force microscopy (AFM) has gained popularity as an instrument to interrogate material properties, such as the indentation modulus, at the microscale via cantilever-based indentation tests equipped with colloidal probes. Current analysis approaches of the indentation modulus from such tests require the size and shape of the colloidal probe as well as the spring constant of the cantilever. To make this technique reproducible, there still exist the challenge of proper calibration and validation of such mechanical assessment. Here, we present a method to (a) fabricate and characterize cantilevers with colloidal probes and (b) provide a guide for estimating the spring constant and the sphere diameter that should be used for a given sample to achieve the highest possible measurement sensitivity. We validated our method by testing agarose samples with indentation moduli ranging over three orders of magnitude via AFM and compared these results with bulk compression tests. Our results show that quantitative measurements of indentation modulus is achieved over three orders of magnitude ranging from 1 kPa to 1000 kPa via AFM cantilever-based microindentation experiments. Therefore, our approach could be used for quantitative micromechanical measurements without the need to perform further validation via bulk compression experiments.
生物材料和组织工程支架的力学评估越来越注重更低的长度尺度水平。除了其他技术外,原子力显微镜(AFM)已作为一种通过配备胶体探针的基于悬臂梁的压痕测试来研究微尺度材料特性(如压痕模量)的仪器而受到关注。目前,从这种测试中分析压痕模量的方法需要胶体探针的尺寸和形状以及悬臂梁的弹性常数。为了使该技术具有可重复性,仍然存在对这种机械评估进行适当校准和验证的挑战。在这里,我们提出了一种(a)制造和表征带有胶体探针的悬臂梁的方法,以及(b)为给定样品估计弹性常数和球体直径的指南,以实现尽可能高的测量灵敏度。我们通过 AFM 测试了具有三个数量级的压痕模量的琼脂糖样品,并将这些结果与体压缩测试进行了比较,从而验证了我们的方法。我们的结果表明,通过 AFM 基于悬臂梁的微压痕实验可以实现三个数量级的压痕模量的定量测量,范围从 1 kPa 到 1000 kPa。因此,我们的方法可以用于定量微观力学测量,而无需通过体压缩实验进行进一步验证。