Suppr超能文献

血清多氟烷基化学品与美国全国人口心血管疾病风险相关。

Serum polyfluoroalkyl chemicals are associated with risk of cardiovascular diseases in national US population.

机构信息

National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, China.

Department of Nutrition, School of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.

出版信息

Environ Int. 2018 Oct;119:37-46. doi: 10.1016/j.envint.2018.05.051. Epub 2018 Jun 19.

Abstract

BACKGROUND

Perfluoroalkyl chemicals (PFCs) as possible cardiovascular disrupters are universally detected in humans. However, evidence from epidemiological studies appears insufficient and ambiguous.

OBJECTIVES

We aim to examine the serum PFCs levels and their associations with the prevalence of cardiovascular diseases (CVD) and related outcomes in general US population.

METHODS

We investigated the serum levels of 12 major PFCs, including perfluorooctanoic acid (PFOA), perfluorooctane sulfonic acid (PFOS), perfluorohexane sulfonic acid (PFHxS), 2-(N-ethyl-perfluorooctane sulfonamido) acetate (EPAH), 2-(N-methyl-perfluorooctane sulfonamido) acetate (MPAH), perfluorodecanoic acid (PFDE), perfluorobutane sulfonate (PFBS), perfluoroheptanoic acid (PFHP), perfluorononanoic acid (PFNA), perfluorooctane sulfonamide (PFSA), perfluoroundecanoic acid (PFUA), and perfluorododecanoic acid (PFDO), in 10,859 participants from the National Health and Nutritional Examination Survey (NHANES) 1999-2014. Logistic regression models were used to estimate the associations between serum PFCs and 5 self-reported CVD outcomes, including congestive heart failure, coronary heart disease, angina pectoris, heart attack, and stroke. Linear regression analyses were used to estimate the PFCs and their associations with 8 traditional CVD risk factors like serum triglyceride and total cholesterol.

RESULTS

In multivariable-adjusted models, total PFCs were positively associated with total CVD (p for trend = 0.0166), independent of traditional CVD risk factors, such as smoking status, diabetes, hypertension and serum cholesterol level. Compared with reference quartile of total PFCs levels, the multivariable adjusted odds ratios in increasing quartiles were 1.23 [95% confidence interval (CI): 0.91-1.66], 1.47 (95% CI: 1.14-1.89) and 1.45 (95% CI: 1.06-1.98) for total CVD. Similar positive associations were found if considering individual PFCs including PFOS, PFUA, MPAH, EPAH, PFDO, PFSA and PFBS. In addition, serum levels of MPAH and PFDO were positively associated with congestive heart failure; PFNA, PFDE, and PFUA were positively associated with coronary heart disease; PFUA and PFDO were positively associated with angina pectoris; and PFNA was positively associated with heart attack.

CONCLUSIONS

Our findings suggested that exposure to PFCs was positively associated with risk of CVD. Further longitudinal studies are needed to increase our understanding about the role of PFCs exposure in the prevalence of CVD.

摘要

背景

全氟烷基化学品(PFCs)作为潜在的心血管干扰物,在人类中普遍存在。然而,来自流行病学研究的证据似乎不够充分且存在歧义。

目的

我们旨在研究一般美国人群中血清 PFC 水平及其与心血管疾病(CVD)患病率和相关结局的关系。

方法

我们调查了 10859 名来自 1999-2014 年国家健康和营养检查调查(NHANES)的参与者血清中 12 种主要 PFCs(包括全氟辛酸(PFOA)、全氟辛烷磺酸(PFOS)、全氟己烷磺酸(PFHxS)、2-(N-乙基-全氟辛烷磺酰胺基)乙酸盐(EPAH)、2-(N-甲基-全氟辛烷磺酰胺基)乙酸盐(MPAH)、全氟癸酸(PFDE)、全氟丁烷磺酸(PFBS)、全氟庚酸(PFHP)、全氟壬酸(PFNA)、全氟辛烷磺酰胺(PFSA)、全氟十一烷酸(PFUA)和全氟十二烷酸(PFDO))的水平。使用逻辑回归模型估计血清 PFCs 与 5 种自我报告的 CVD 结局(充血性心力衰竭、冠心病、心绞痛、心脏病发作和中风)之间的关联。使用线性回归分析估计 PFCs 及其与血清甘油三酯和总胆固醇等 8 种传统 CVD 风险因素的关联。

结果

在多变量调整模型中,总 PFCs 与总 CVD 呈正相关(趋势 P=0.0166),独立于传统 CVD 风险因素,如吸烟状况、糖尿病、高血压和血清胆固醇水平。与总 PFCs 水平参考四分位间距相比,四分位间距递增的多变量调整比值比分别为 1.23(95%置信区间[CI]:0.91-1.66)、1.47(95% CI:1.14-1.89)和 1.45(95% CI:1.06-1.98)。如果考虑 PFOS、PFUA、MPAH、EPAH、PFDO、PFSA 和 PFBS 等单个 PFCs,也发现了类似的正相关关系。此外,血清 MPAH 和 PFDO 水平与充血性心力衰竭呈正相关;PFNA、PFDE 和 PFUA 与冠心病呈正相关;PFUA 和 PFDO 与心绞痛呈正相关;PFNA 与心脏病发作呈正相关。

结论

我们的研究结果表明,PFCs 暴露与 CVD 风险呈正相关。需要进一步的纵向研究来提高我们对 PFCs 暴露在 CVD 患病率中的作用的理解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验