Institute of Physics of the Czech Academy of Sciences, Prague 18221, Czech Republic.
Bioessays. 2018 Aug;40(8):e1800017. doi: 10.1002/bies.201800017. Epub 2018 Jun 25.
Imagine cells that live in a high-gradient magnetic field (HGMF). Through what mechanisms do the cells sense a non-uniform magnetic field and how such a field changes the cell fate? We show that magnetic forces generated by HGMFs can be comparable to intracellular forces and therefore may be capable of altering the functionality of an individual cell and tissues in unprecedented ways. We identify the cellular effectors of such fields and propose novel routes in cell biology predicting new biological effects such as magnetic control of cell-to-cell communication and vesicle transport, magnetic control of intracellular ROS levels, magnetically induced differentiation of stem cells, magnetically assisted cell division, or prevention of cells from dividing. On the basis of experimental facts and theoretical modeling we reveal timescales of cellular responses to high-gradient magnetic fields and suggest an explicit dependence of the cell response time on the magnitude of the magnetic field gradient.
想象一下生活在高梯度磁场(HGMF)中的细胞。细胞通过什么机制感知非均匀磁场,以及这种磁场如何改变细胞命运?我们表明,HGMF 产生的磁力可以与细胞内的力相媲美,因此可能能够以前所未有的方式改变单个细胞和组织的功能。我们确定了这种场的细胞效应物,并提出了细胞生物学中的新途径,预测了新的生物学效应,例如磁场控制细胞间通讯和囊泡运输、磁场控制细胞内 ROS 水平、磁场诱导干细胞分化、磁场辅助细胞分裂或阻止细胞分裂。基于实验事实和理论模型,我们揭示了细胞对高梯度磁场的响应时间,并提出细胞响应时间与磁场梯度大小的明确依赖性。
Sci Rep. 2016-11-18
Bioelectromagnetics. 2021-1
Bioelectromagnetics. 2012-7
J Chromatogr B Analyt Technol Biomed Life Sci. 2016-8-1
Regen Biomater. 2024-5-7
Methods Mol Biol. 2024
Life (Basel). 2023-6-26
Micromachines (Basel). 2023-2-11
Cells. 2023-1-14
Zool Res. 2023-3-18
Stem Cell Res Ther. 2022-4-1