文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

高梯度磁场如何影响细胞生命。

How a High-Gradient Magnetic Field Could Affect Cell Life.

机构信息

Department of Optical and Biophysical Systems, Institute of Physics of the Academy of Sciences of the Czech Republic, Prague, 18221, Czech Republic.

出版信息

Sci Rep. 2016 Nov 18;6:37407. doi: 10.1038/srep37407.


DOI:10.1038/srep37407
PMID:27857227
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC5114642/
Abstract

The biological effects of high-gradient magnetic fields (HGMFs) have steadily gained the increased attention of researchers from different disciplines, such as cell biology, cell therapy, targeted stem cell delivery and nanomedicine. We present a theoretical framework towards a fundamental understanding of the effects of HGMFs on intracellular processes, highlighting new directions for the study of living cell machinery: changing the probability of ion-channel on/off switching events by membrane magneto-mechanical stress, suppression of cell growth by magnetic pressure, magnetically induced cell division and cell reprograming, and forced migration of membrane receptor proteins. By deriving a generalized form for the Nernst equation, we find that a relatively small magnetic field (approximately 1 T) with a large gradient (up to 1 GT/m) can significantly change the membrane potential of the cell and thus have a significant impact on not only the properties and biological functionality of cells but also cell fate.

摘要

高梯度磁场(HGMFs)的生物学效应已经引起了不同学科研究人员的关注,如细胞生物学、细胞治疗、靶向干细胞递送和纳米医学。我们提出了一个理论框架,以深入了解 HGMFs 对细胞内过程的影响,强调了研究活细胞机制的新方向:通过膜磁机械应力改变离子通道的开/关转换事件的概率,通过磁压力抑制细胞生长,磁诱导细胞分裂和细胞重编程,以及膜受体蛋白的强制迁移。通过推导出 Nernst 方程的广义形式,我们发现相对较小的磁场(约 1T)和较大的梯度(高达 1GT/m)可以显著改变细胞膜电位,从而对细胞的性质和生物学功能产生重大影响,甚至影响细胞命运。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3da7/5114642/7258157a43bf/srep37407-f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3da7/5114642/e89a41511632/srep37407-f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3da7/5114642/a73d08de8e18/srep37407-f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3da7/5114642/4bd8ac34db2c/srep37407-f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3da7/5114642/98c59f0f06fd/srep37407-f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3da7/5114642/8ae22737cbb6/srep37407-f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3da7/5114642/7258157a43bf/srep37407-f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3da7/5114642/e89a41511632/srep37407-f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3da7/5114642/a73d08de8e18/srep37407-f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3da7/5114642/4bd8ac34db2c/srep37407-f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3da7/5114642/98c59f0f06fd/srep37407-f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3da7/5114642/8ae22737cbb6/srep37407-f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3da7/5114642/7258157a43bf/srep37407-f6.jpg

相似文献

[1]
How a High-Gradient Magnetic Field Could Affect Cell Life.

Sci Rep. 2016-11-18

[2]
Cells in the Non-Uniform Magnetic World: How Cells Respond to High-Gradient Magnetic Fields.

Bioessays. 2018-6-25

[3]
Modulation of the Cell Membrane Potential and Intracellular Protein Transport by High Magnetic Fields.

Bioelectromagnetics. 2021-1

[4]
A new theoretical model for transmembrane potential and ion currents induced in a spherical cell under low frequency electromagnetic field.

Bioelectromagnetics. 2016-10

[5]
Effects of static magnetic fields on diffusion in solutions.

Bioelectromagnetics. 1988

[6]
[Study on human sensitivity of extremely low frequency electromagnetic field].

Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2000-9

[7]
Transmembrane potential induced on the internal organelle by a time-varying magnetic field: a model study.

J Neuroeng Rehabil. 2010-2-20

[8]
Effects of the pulsed electromagnetic field PST® on human tendon stem cells: a controlled laboratory study.

BMC Complement Altern Med. 2016-8-18

[9]
Theoretical analysis of transmembrane potential of cells exposed to nanosecond pulsed electric field.

Int J Radiat Biol. 2017-2

[10]
Effect of a gradient static magnetic field on an unstirred Belousov-Zhabotinsky reaction by changing the thickness of the medium.

J Phys Chem A. 2009-4-2

引用本文的文献

[1]
Investigation of the influence of magnetic fields on the separation of selected substances in reversed-phase column chromatography.

Sci Rep. 2025-8-30

[2]
Stimuli-responsive hybrid materials for 4D tissue models.

Mater Today Bio. 2025-7-2

[3]
Magnetic Fields Impact on PIN-FORMED Protein Polarity in Arabidopsis thaliana.

Physiol Plant. 2025

[4]
Research status of biomaterials based on physical signals for bone injury repair.

Regen Ther. 2025-2-13

[5]
Exploring Ion Channel Magnetic Pharmacology: Are Magnetic Cues a Viable Alternative to Ion Channel Drugs?

Bioessays. 2025-3

[6]
Parallelized Mechanical Stimulation of Neuronal Calcium Through Cell-Internal Nanomagnetic Forces Provokes Lasting Shifts in the Network Activity State.

Small. 2025-1

[7]
A Review of Electromagnetic Fields in Cellular Interactions and Cacao Bean Fermentation.

Foods. 2024-9-26

[8]
Cellular and Molecular Effects of Magnetic Fields.

Int J Mol Sci. 2024-8-17

[9]
Microbiology of human spaceflight: microbial responses to mechanical forces that impact health and habitat sustainability.

Microbiol Mol Biol Rev. 2024-9-26

[10]
Numerical simulation and mathematical modeling of biomechanical stress distribution in poroelastic tumor tissue via magnetic field and bio-ferro-fluid.

Heliyon. 2024-7-15

本文引用的文献

[1]
Bioelectrical Signals and Ion Channels in the Modeling of Multicellular Patterns and Cancer Biophysics.

Sci Rep. 2016-2-4

[2]
Induction of Calcium Influx in Cortical Neural Networks by Nanomagnetic Forces.

ACS Nano. 2016-2-23

[3]
Magnetically actuated tissue engineered scaffold: insights into mechanism of physical stimulation.

Nanoscale. 2016-2-14

[4]
Single-molecule fluorimetry and gating currents inspire an improved optical voltage indicator.

Elife. 2015-11-24

[5]
A magnetic protein biocompass.

Nat Mater. 2015-11-16

[6]
CELL SIGNALING. Lipids link ion channels and cancer.

Science. 2015-8-21

[7]
Plasma membrane mechanical stress activates TRPC5 channels.

PLoS One. 2015-4-7

[8]
Modulation of monocytic leukemia cell function and survival by high gradient magnetic fields and mathematical modeling studies.

Biomaterials. 2014-1-15

[9]
Microfluidic immunomagnetic cell separation using integrated permanent micromagnets.

Biomicrofluidics. 2013-10-15

[10]
Three-dimensional cell culturing by magnetic levitation.

Nat Protoc. 2013-9-12

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索