Institute of Physics of the Czech Academy of Sciences, Prague, Czech Republic.
Bioelectromagnetics. 2021 Jan;42(1):27-36. doi: 10.1002/bem.22309. Epub 2020 Nov 12.
To explore cellular responses to high magnetic fields (HMF), we present a model of the interactions of cells with a homogeneous HMF that accounts for the magnetic force exerted on paramagnetic/diamagnetic species. There are various chemical species inside a living cell, many of which may have large concentration gradients. Thus, when an HMF is applied to a cell, the concentration-gradient magnetic forces act on paramagnetic or diamagnetic species and can either assist or oppose large particle movement through the cytoplasm. We demonstrate possibilities for changing the machinery in living cells with HMFs and predict two new mechanisms for modulating cellular functions with HMFs via (i) changes in the membrane potential and (ii) magnetically assisted intracellular diffusiophoresis of large proteins. By deriving a generalized form for the Nernst equation, we find that an HMF can change the membrane potential of the cell and thus have a significant impact on the properties and biological functionality of cells. The elaborated model provides a universal framework encompassing current studies on controlling cell functions by high static magnetic fields. Bioelectromagnetics. 2021;42:27-36. © 2020 Bioelectromagnetics Society.
为了探索细胞对强磁场(HMF)的反应,我们提出了一个细胞与均匀 HMF 相互作用的模型,该模型考虑了对顺磁/抗磁物质施加的磁力。活细胞内有各种化学物质,其中许多物质可能具有较大的浓度梯度。因此,当 HMF 施加到细胞上时,浓度梯度磁力作用于顺磁或抗磁物质,并且可以协助或对抗大颗粒通过细胞质的运动。我们展示了用 HMF 改变活细胞内机器的可能性,并通过(i)膜电位的变化和(ii)大蛋白的磁辅助细胞内扩散电泳,预测了两种用 HMF 调节细胞功能的新机制。通过推导出 Nernst 方程的广义形式,我们发现 HMF 可以改变细胞的膜电位,从而对细胞的性质和生物功能产生重大影响。详细阐述的模型提供了一个通用框架,包含了目前通过强静磁场控制细胞功能的研究。生物电磁学。2021;42:27-36。©2020 生物电磁学学会。
Bioelectromagnetics. 2021-1
Sci Rep. 2016-11-18
Bioelectromagnetics. 2017-2
Bioelectromagnetics. 2020-12
Bioelectromagnetics. 2020-4
Bioelectromagnetics. 2021-9
J Nanobiotechnology. 2024-6-10
Int J Mol Sci. 2024-8-17
Life (Basel). 2023-6-26