School of Chemical Engineering, The University of Adelaide, 5005 Adelaide, Australia and Institute for Photonics and Advanced Sensing (IPAS), The University of Adelaide, 5005 Adelaide, Australia.
Institute for Photonics and Advanced Sensing (IPAS), The University of Adelaide, 5005 Adelaide, Australia.
Nanoscale. 2018 Aug 7;10(29):14139-14152. doi: 10.1039/c8nr04263b. Epub 2018 Jul 12.
A comprehensive study about the structural engineering of high quality nanoporous anodic alumina optical microcavities (NAA-μCVs) fabricated by rationally designed anodisation strategies to enhance the light-confining capabilities of these photonic crystal (PC) structures is presented. Two types of NAA-μCV architectures are produced: (i) GIF-NAA-μCVs composed of a cavity layer featuring straight nanopores that is sandwiched between two gradient-index filters (GIFs) with sinusoidally modulated porosity in depth, and (ii) DBR-NAA-μCVs formed by sandwiching a cavity layer with straight nanopores between two distributed Bragg reflectors (DBRs), in which the porosity is engineered in a stepwise fashion. The geometric features of GIF-NAA-μCVs and DBR-NAA-μCVs are engineered and optimised through a systematic modification of the anodisation parameters (i.e. cavity anodisation time, cavity anodisation current density, anodisation period and number of anodisation pulses, and pore widening time). This methodology enables fine-tuning of the optical properties of GIF-NAA-μCVs and DBR-NAA-μCVs, such as quality factor and position and width of resonance band, to generate NAA-μCVs with unprecedented quality factors (i.e. 170 ± 8 and 206 ± 10 for the first and second order resonance bands - threefold and fourfold quality enhancement as compared to previous studies). Our results demonstrate that an optimal design of the geometric features and the nanoporous architecture of NAA-μCVs can significantly enhance resonant recirculation of light within these PC structures, creating new opportunities to develop ultrasensitive optical platforms, highly selective optical filters, and other photonic devices.
本文提出了一种全面的研究,针对高质量纳米多孔阳极氧化铝光学微腔(NAA-μCVs)的结构工程,采用合理设计的阳极氧化策略来增强这些光子晶体(PC)结构的光限制能力。制备了两种类型的 NAA-μCV 结构:(i)由具有直纳米孔的腔层组成的 GIF-NAA-μCVs,该腔层夹在两个深度调制的梯度折射率滤波器(GIF)之间,(ii)由直纳米孔腔层夹在两个分布式布拉格反射器(DBR)之间形成的 DBR-NAA-μCVs,其中,孔隙率采用逐步式设计。通过系统地修改阳极氧化参数(即腔阳极氧化时间、腔阳极氧化电流密度、阳极氧化周期和阳极氧化脉冲数以及孔扩宽时间),对 GIF-NAA-μCVs 和 DBR-NAA-μCVs 的几何特征进行了设计和优化。这种方法能够微调 GIF-NAA-μCVs 和 DBR-NAA-μCVs 的光学特性,例如品质因数以及共振带的位置和宽度,从而生成具有前所未有的品质因数的 NAA-μCVs(第一和第二阶共振带的品质因数分别为 170±8 和 206±10,与之前的研究相比,提高了三倍和四倍)。我们的结果表明,对 NAA-μCVs 的几何特征和纳米多孔结构进行优化设计,可以显著增强这些 PC 结构内光的共振再循环,为开发超灵敏光学平台、高选择性光学滤波器和其他光子器件创造了新的机会。