Suppr超能文献

众包用于自我监测:使用交通灯饮食法与众包来提供饮食反馈。

Crowdsourcing for self-monitoring: Using the Traffic Light Diet and crowdsourcing to provide dietary feedback.

作者信息

Turner-McGrievy Gabrielle M, Wilcox Sara, Kaczynski Andrew T, Spruijt-Metz Donna, Hutto Brent E, Muth Eric R, Hoover Adam

机构信息

Department of Health Promotion, Education, and Behavior, Arnold School of Public Health, University of South Carolina, USA.

Prevention Research Center, Arnold School of Public Health, University of South Carolina, USA.

出版信息

Digit Health. 2016 Jul 12;2:2055207616657212. doi: 10.1177/2055207616657212. eCollection 2016 Jan-Dec.

Abstract

BACKGROUND

Smartphone photography and crowdsourcing feedback could reduce participant burden for dietary self-monitoring.

OBJECTIVES

To assess if untrained individuals can accurately crowdsource diet quality ratings of food photos using the Traffic Light Diet (TLD) approach.

METHODS

Participants were recruited via Amazon Mechanical Turk and read a one-page description on the TLD. The study examined the participant accuracy score (total number of correctly categorized foods as red, yellow, or green per person), the food accuracy score (accuracy by which each food was categorized), and if the accuracy of ratings increased when more users were included in the crowdsourcing. For each of a range of possible crowd sizes ( = 15,  = 30, etc.), 10,000 bootstrap samples were drawn and a 95% confidence interval (CI) for accuracy constructed using the 2.5th and 97.5th percentiles.

RESULTS

Participants ( = 75; body mass index 28.0 ± 7.5; age 36 ± 11; 59% attempting weight loss) rated 10 foods as red, yellow, or green. Raters demonstrated high red/yellow/green accuracy (>75%) examining all foods. Mean accuracy score per participant was 77.6 ± 14.0%. Individual photos were rated accurately the majority of the time (range = 50%-100%). There was little variation in the 95% CI for each of the five different crowd sizes, indicating that large numbers of individuals may not be needed to accurately crowdsource foods.

CONCLUSIONS

Nutrition-novice users can be trained easily to rate foods using the TLD. Since feedback from crowdsourcing relies on the agreement of the majority, this method holds promise as a low-burden approach to providing diet-quality feedback.

摘要

背景

智能手机拍照和众包反馈可以减轻参与者进行饮食自我监测的负担。

目的

评估未经培训的个体能否使用交通灯饮食(TLD)方法准确地众包食物照片的饮食质量评分。

方法

通过亚马逊土耳其机器人招募参与者,并让他们阅读一页关于TLD的描述。该研究考察了参与者的准确性得分(每人正确分类为红色、黄色或绿色的食物总数)、食物准确性得分(每种食物分类的准确性),以及众包中纳入更多用户时评分准确性是否会提高。对于一系列可能的人群规模(n = 15、n = 30等),抽取10000个自助样本,并使用第2.5百分位数和第97.5百分位数构建准确性的95%置信区间(CI)。

结果

参与者(n = 75;体重指数28.0±7.5;年龄36±11;59%尝试减肥)将10种食物评为红色、黄色或绿色。评分者在检查所有食物时表现出较高的红/黄/绿准确性(>75%)。每位参与者的平均准确性得分为77.6±14.0%。大多数时候,单个照片的评分是准确的(范围为50%-100%)。五种不同人群规模的95%CI变化不大,表明可能不需要大量个体就能准确地众包食物。

结论

营养新手用户可以轻松接受培训,使用TLD对食物进行评分。由于众包反馈依赖于大多数人的一致意见,这种方法有望成为一种提供饮食质量反馈的低负担方法。

相似文献

1
Crowdsourcing for self-monitoring: Using the Traffic Light Diet and crowdsourcing to provide dietary feedback.
Digit Health. 2016 Jul 12;2:2055207616657212. doi: 10.1177/2055207616657212. eCollection 2016 Jan-Dec.
2
The use of crowdsourcing for dietary self-monitoring: crowdsourced ratings of food pictures are comparable to ratings by trained observers.
J Am Med Inform Assoc. 2015 Apr;22(e1):e112-9. doi: 10.1136/amiajnl-2014-002636. Epub 2014 Aug 4.
3
Rapid grading of fundus photographs for diabetic retinopathy using crowdsourcing.
J Med Internet Res. 2014 Oct 30;16(10):e233. doi: 10.2196/jmir.3807.
9
Crowdsourcing the Citation Screening Process for Systematic Reviews: Validation Study.
J Med Internet Res. 2019 Apr 29;21(4):e12953. doi: 10.2196/12953.
10
Crowdsourcing to Assess Speech Quality Associated With Velopharyngeal Dysfunction.
Cleft Palate Craniofac J. 2021 Jan;58(1):25-34. doi: 10.1177/1055665620948770. Epub 2020 Aug 18.

本文引用的文献

1
Go!: results from a quasi-experimental obesity prevention trial with hospital employees.
BMC Public Health. 2016 Feb 19;16:171. doi: 10.1186/s12889-016-2828-0.
2
Promising approaches of computer-supported dietary assessment and management-Current research status and available applications.
Int J Med Inform. 2015 Dec;84(12):997-1008. doi: 10.1016/j.ijmedinf.2015.08.006. Epub 2015 Aug 20.
3
Amazon's Mechanical Turk: A New Source of Inexpensive, Yet High-Quality, Data?
Perspect Psychol Sci. 2011 Jan;6(1):3-5. doi: 10.1177/1745691610393980. Epub 2011 Feb 3.
4
Using traffic light labels to improve food selection in recreation and sport facility eating environments.
Appetite. 2015 Aug;91:329-35. doi: 10.1016/j.appet.2015.04.057. Epub 2015 Apr 23.
5
Nutrition labels influence value computation of food products in the ventromedial prefrontal cortex.
Obesity (Silver Spring). 2015 Apr;23(4):786-92. doi: 10.1002/oby.21027. Epub 2015 Mar 9.
6
Point-of-decision prompts for increasing park-based physical activity: a crowdsource analysis.
Prev Med. 2014 Dec;69:87-9. doi: 10.1016/j.ypmed.2014.08.029. Epub 2014 Sep 7.
7
The use of crowdsourcing for dietary self-monitoring: crowdsourced ratings of food pictures are comparable to ratings by trained observers.
J Am Med Inform Assoc. 2015 Apr;22(e1):e112-9. doi: 10.1136/amiajnl-2014-002636. Epub 2014 Aug 4.
10
Crowdsourcing applications for public health.
Am J Prev Med. 2014 Feb;46(2):179-87. doi: 10.1016/j.amepre.2013.10.016.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验