MRC Biostatistics Unit, University of Cambridge, UK; Big Data Institute, University of Oxford, UK; Department of Statistics, University of Oxford, UK.
MRC Cognition and Brain Sciences Unit, University of Cambridge, UK.
Neuroimage. 2021 Jan 15;225:117480. doi: 10.1016/j.neuroimage.2020.117480. Epub 2020 Oct 21.
The brain can be modelled as a network with nodes and edges derived from a range of imaging modalities: the nodes correspond to spatially distinct regions and the edges to the interactions between them. Whole-brain connectivity studies typically seek to determine how network properties change with a given categorical phenotype such as age-group, disease condition or mental state. To do so reliably, it is necessary to determine the features of the connectivity structure that are common across a group of brain scans. Given the complex interdependencies inherent in network data, this is not a straightforward task. Some studies construct a group-representative network (GRN), ignoring individual differences, while other studies analyse networks for each individual independently, ignoring information that is shared across individuals. We propose a Bayesian framework based on exponential random graph models (ERGM) extended to multiple networks to characterise the distribution of an entire population of networks. Using resting-state fMRI data from the Cam-CAN project, a study on healthy ageing, we demonstrate how our method can be used to characterise and compare the brain's functional connectivity structure across a group of young individuals and a group of old individuals.
大脑可以被建模为一个具有节点和边的网络,这些节点和边源自一系列成像模态:节点对应于空间上不同的区域,边对应于它们之间的相互作用。全脑连接研究通常试图确定网络属性如何随给定的分类表型(如年龄组、疾病状况或精神状态)而变化。为了可靠地做到这一点,有必要确定在一组大脑扫描中共同存在的连接结构的特征。鉴于网络数据中固有的复杂相互依存关系,这不是一项简单的任务。一些研究构建了一个忽略个体差异的群组代表性网络(GRN),而其他研究则独立分析每个个体的网络,忽略了个体之间共享的信息。我们提出了一个基于指数随机图模型(ERGM)的贝叶斯框架,并将其扩展到多个网络,以描述整个网络群体的分布。我们使用来自 Cam-CAN 项目(一项关于健康老龄化的研究)的静息态 fMRI 数据,演示了如何使用我们的方法来描述和比较一群年轻人和一群老年人的大脑功能连接结构。