Suppr超能文献

基于联合非负矩阵分解和通路特征分析的生物标志物发现

Biomarker discovery by integrated joint non-negative matrix factorization and pathway signature analyses.

机构信息

Human Genome Center, the Institute of Medical Science, the University of Tokyo, Tokyo, Japan.

Discovery and Preclinical Research Division, Taiho Pharmaceutical Co., Ltd., Tsukuba, Japan.

出版信息

Sci Rep. 2018 Jun 27;8(1):9743. doi: 10.1038/s41598-018-28066-w.

Abstract

Predictive biomarkers are important for selecting appropriate patients for particular treatments. Comprehensive genomic, transcriptomic, and pharmacological data provide clues for understanding relationships between biomarkers and drugs. However, it is still difficult to mine biologically meaningful biomarkers from multi-omics data. Here, we developed an approach for mining multi-omics cell line data by integrating joint non-negative matrix factorization (JNMF) and pathway signature analyses to identify candidate biomarkers. The JNMF detected known associations between biomarkers and drugs such as BRAF mutation with PLX4720 and HER2 amplification with lapatinib. Furthermore, we observed that tumours with both BRAF mutation and MITF activation were more sensitive to BRAF inhibitors compared to tumours with BRAF mutation without MITF activation. Therefore, activation of the BRAF/MITF axis seems to be a more appropriate biomarker for predicting the efficacy of a BRAF inhibitor than the conventional biomarker of BRAF mutation alone. Our biomarker discovery scheme represents an integration of JNMF multi-omics clustering and multi-layer interpretation based on pathway gene signature analyses. This approach is also expected to be useful for establishing drug development strategies, identifying pharmacodynamic biomarkers, in mode of action analysis, as well as for mining drug response data in a clinical setting.

摘要

预测生物标志物对于选择特定治疗方法的合适患者非常重要。全面的基因组、转录组和药理学数据为理解生物标志物与药物之间的关系提供了线索。然而,从多组学数据中挖掘有生物学意义的生物标志物仍然具有挑战性。在这里,我们开发了一种通过整合联合非负矩阵分解 (JNMF) 和途径特征分析来挖掘多组学细胞系数据的方法,以识别候选生物标志物。JNMF 检测到生物标志物和药物之间的已知关联,例如 BRAF 突变与 PLX4720 和 HER2 扩增与 lapatinib。此外,我们观察到同时具有 BRAF 突变和 MITF 激活的肿瘤对 BRAF 抑制剂比仅具有 BRAF 突变而没有 MITF 激活的肿瘤更敏感。因此,与单独的 BRAF 突变传统生物标志物相比,BRAF/MITF 轴的激活似乎是预测 BRAF 抑制剂疗效的更合适生物标志物。我们的生物标志物发现方案代表了 JNMF 多组学聚类与基于途径基因特征分析的多层解释的整合。这种方法还预计可用于建立药物开发策略、识别药效生物标志物、作用机制分析,以及挖掘临床环境中的药物反应数据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/383d/6021419/3bf29e3de744/41598_2018_28066_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验