Georgaka Sokratia, Morgans William Geraint, Zhao Qian, Martinez Diego Sanchez, Ali Amin, Ghafoor Mohamed, Baker Syed-Murtuza, Bristow Robert G, Iqbal Mudassar, Rattray Magnus
Division of Informatics, Imaging and Data Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, United Kingdom.
CRUK Manchester Institute, University of Manchester, Manchester M20 4BX, United Kingdom.
Nucleic Acids Res. 2025 Mar 20;53(6). doi: 10.1093/nar/gkaf251.
Spatially resolved transcriptomics has enabled the study of expression of genes within tissues while retaining their spatial identity. Most spatial transcriptomics (ST) technologies generate a matched histopathological image as part of the standard pipeline, providing morphological information that can complement the transcriptomics data. Here, we present CellPie, a fast, unsupervised factor discovery method based on joint non-negative matrix factorization of spatial RNA transcripts and histological image features. CellPie employs the accelerated hierarchical least squares method to significantly reduce the computational time, enabling efficient application to high-dimensional ST datasets. We assessed CellPie on three different human cancer types with different spatial resolutions, including a highly resolved Visium HD dataset, demonstrating both good performance and high computational efficiency compared to existing methods.
空间分辨转录组学能够在保留组织内基因空间身份的同时,对其基因表达进行研究。大多数空间转录组学(ST)技术都会生成一张匹配的组织病理学图像,作为标准流程的一部分,提供可补充转录组学数据的形态学信息。在此,我们介绍CellPie,这是一种基于空间RNA转录本和组织学图像特征的联合非负矩阵分解的快速无监督因子发现方法。CellPie采用加速分层最小二乘法来显著减少计算时间,从而能够有效地应用于高维ST数据集。我们在三种具有不同空间分辨率的不同人类癌症类型上评估了CellPie,包括一个高分辨率的Visium HD数据集,与现有方法相比,它展现出了良好的性能和较高的计算效率。