KU Leuven Department of Microbiology and Immunology, Rega Institute, Laboratory of Molecular Bacteriology, Leuven, Belgium.
Division of Microbial Ecology, Department of Microbiology and Ecosystem Sciences, University of Vienna, Althanstr. 14, 1090, Vienna, Austria.
Microbiome. 2018 Jun 28;6(1):120. doi: 10.1186/s40168-018-0496-2.
Growth rates, interactions between community members, stochasticity, and immigration are important drivers of microbial community dynamics. In sequencing data analysis, such as network construction and community model parameterization, we make implicit assumptions about the nature of these drivers and thereby restrict model outcome. Despite apparent risk of methodological bias, the validity of the assumptions is rarely tested, as comprehensive procedures are lacking. Here, we propose a classification scheme to determine the processes that gave rise to the observed time series and to enable better model selection.
We implemented a three-step classification scheme in R that first determines whether dependence between successive time steps (temporal structure) is present in the time series and then assesses with a recently developed neutrality test whether interactions between species are required for the dynamics. If the first and second tests confirm the presence of temporal structure and interactions, then parameters for interaction models are estimated. To quantify the importance of temporal structure, we compute the noise-type profile of the community, which ranges from black in case of strong dependency to white in the absence of any dependency. We applied this scheme to simulated time series generated with the Dirichlet-multinomial (DM) distribution, Hubbell's neutral model, the generalized Lotka-Volterra model and its discrete variant (the Ricker model), and a self-organized instability model, as well as to human stool microbiota time series. The noise-type profiles for all but DM data clearly indicated distinctive structures. The neutrality test correctly classified all but DM and neutral time series as non-neutral. The procedure reliably identified time series for which interaction inference was suitable. Both tests were required, as we demonstrated that all structured time series, including those generated with the neutral model, achieved a moderate to high goodness of fit to the Ricker model.
We present a fast and robust scheme to classify community structure and to assess the prevalence of interactions directly from microbial time series data. The procedure not only serves to determine ecological drivers of microbial dynamics, but also to guide selection of appropriate community models for prediction and follow-up analysis.
增长率、群落成员之间的相互作用、随机性和迁入是微生物群落动态的重要驱动因素。在测序数据分析中,如网络构建和群落模型参数化,我们对这些驱动因素的性质做出了隐含的假设,从而限制了模型结果。尽管存在方法学偏见的明显风险,但由于缺乏全面的程序,这些假设的有效性很少得到检验。在这里,我们提出了一种分类方案,以确定导致观察到的时间序列的过程,并能够更好地选择模型。
我们在 R 中实现了一个三步分类方案,该方案首先确定时间序列中是否存在连续时间步之间的依赖关系(时间结构),然后使用最近开发的中性测试评估是否需要物种之间的相互作用来驱动动态。如果前两个测试确认存在时间结构和相互作用,则估计相互作用模型的参数。为了量化时间结构的重要性,我们计算了群落的噪声类型分布,其范围从强烈依赖时的黑色到不存在任何依赖时的白色。我们将该方案应用于使用狄利克雷-多项式(DM)分布、Hubbell 中性模型、广义Lotka-Volterra 模型及其离散变体(Ricker 模型)以及自组织不稳定性模型生成的模拟时间序列,以及人类粪便微生物组时间序列。除了 DM 数据之外,所有噪声类型分布都清楚地表明了不同的结构。中性测试正确地将除 DM 和中性时间序列之外的所有时间序列归类为非中性。该程序可靠地识别了适合进行相互作用推断的时间序列。两个测试都是必需的,因为我们证明了所有结构化时间序列,包括使用中性模型生成的时间序列,都能很好地拟合 Ricker 模型。
我们提出了一种快速而稳健的方案,用于直接从微生物时间序列数据中分类群落结构并评估相互作用的普遍性。该程序不仅有助于确定微生物动态的生态驱动因素,还可指导选择适当的群落模型进行预测和后续分析。