McCullough Hugh C, Song Hyun-Seob, Auchtung Jennifer M
Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA.
Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, Nebraska, USA.
Microbiol Spectr. 2025 Apr;13(4):e0261824. doi: 10.1128/spectrum.02618-24. Epub 2025 Mar 6.
Dietary fibers play a significant role in shaping the composition and function of microbial communities in the human colon. Our understanding of the specific chemical traits of dietary fibers that influence microbial diversity, interactions, and function remains limited. Toward filling this knowledge gap, we developed a novel measure, termed Chemical Subunits and Linkages (CheSL) Shannon diversity, to characterize the effects of carbohydrate complexity on human fecal bacteria cultured under controlled, continuous flow conditions using media that systematically varied in carbohydrate composition. Our analysis revealed that CheSL Shannon diversity demonstrated a strong Pearson correlation with microbial richness across multiple fecal samples and study designs. Additionally, we observed that microbial communities in media with higher CheSL Shannon diversity scores exhibited greater peptide utilization and more connected, reproducible structures in computationally inferred microbial interaction networks. Taken together, these findings demonstrate that CheSL Shannon diversity can be a useful tool to quantify the effects of carbohydrate complexity on microbial diversity, metabolic potential, and interactions. Furthermore, our work highlights how robust and stable community data can be generated by engineering media composition and structure. These studies provide a valuable framework for future research on microbial community interactions and their potential impacts on host health.IMPORTANCEFor the human adult gut microbiota, higher microbial diversity strongly correlates with positive health outcomes. This correlation is likely due to increased community resilience that results from functional redundancy that can occur within diverse communities. While previous studies have shown that dietary fibers influence microbiota composition and function, we lack a complete mechanistic understanding of how differences in the composition of fibers are likely to functionally impact microbiota diversity. To address this need, we developed Chemical Subunits and Linkages Shannon diversity, a novel measure that describes carbohydrate complexity. Using this measure, we were able to correlate changes in carbohydrate complexity with alterations in microbial diversity and interspecies interactions. Overall, these analyses provide new perspectives on dietary optimization strategies to improve human health.
膳食纤维在塑造人类结肠微生物群落的组成和功能方面发挥着重要作用。我们对影响微生物多样性、相互作用和功能的膳食纤维特定化学特性的理解仍然有限。为了填补这一知识空白,我们开发了一种新的测量方法,称为化学亚基和连接(CheSL)香农多样性,以表征碳水化合物复杂性对在可控连续流动条件下使用碳水化合物组成系统变化的培养基培养的人类粪便细菌的影响。我们的分析表明,CheSL香农多样性在多个粪便样本和研究设计中与微生物丰富度呈现出很强的皮尔逊相关性。此外,我们观察到,在具有较高CheSL香农多样性得分的培养基中的微生物群落表现出更高的肽利用率,并且在计算推断的微生物相互作用网络中具有更紧密、可重复的结构。综上所述,这些发现表明,CheSL香农多样性可以成为量化碳水化合物复杂性对微生物多样性、代谢潜力和相互作用影响的有用工具。此外,我们的工作突出了如何通过设计培养基的组成和结构来生成稳健且稳定的群落数据。这些研究为未来关于微生物群落相互作用及其对宿主健康潜在影响的研究提供了有价值的框架。
重要性
对于人类成年肠道微生物群,较高的微生物多样性与积极的健康结果密切相关。这种相关性可能是由于不同群落中可能存在的功能冗余导致群落恢复力增强。虽然先前的研究表明膳食纤维会影响微生物群的组成和功能,但我们缺乏对纤维组成差异如何在功能上影响微生物群多样性的完整机制理解。为了满足这一需求,我们开发了化学亚基和连接香农多样性,这是一种描述碳水化合物复杂性的新测量方法。使用这种方法,我们能够将碳水化合物复杂性的变化与微生物多样性和种间相互作用的改变联系起来。总体而言,这些分析为改善人类健康的饮食优化策略提供了新的视角。