Suppr超能文献

利用深度学习模型集成的可解释人工智能进行痴呆预测,以增强临床决策支持系统。

Leveraging explainable artificial intelligence with ensemble of deep learning model for dementia prediction to enhance clinical decision support systems.

作者信息

Medani Mohamed, Elhessewi Ghada Moh Samir, Alqahtani Mohammed, Asklany Somia A, Alamro Sulaiman, Albalawneh Da'ad, Alshammeri Menwa, Assiri Mohammed

机构信息

Department of Information Systems, Applied College at Mahayil, King Khalid University, Abha, Kingdom of Saudi Arabia.

Department of Health Sciences, College of Health and Rehabilitation Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, 11671, Riyadh, Kingdom of Saudi Arabia.

出版信息

Sci Rep. 2025 May 13;15(1):16639. doi: 10.1038/s41598-025-97102-3.

Abstract

The prevalence of dementia is growing worldwide due to the fast ageing of the population. Dementia is an intricate illness that is frequently produced by a mixture of genetic and environmental risk factors. There is no treatment for dementia yet; therefore, the early detection and identification of persons at greater risk of emerging dementia becomes crucial, as this might deliver an opportunity to adopt lifestyle variations to decrease the risk of dementia. Many dementia risk prediction techniques to recognize individuals at high risk have progressed in the past few years. Accepting a structure uniting explainability in artificial intelligence (XAI) with intricate systems will enable us to classify analysts of dementia incidence and then verify their occurrence in the survey as recognized or suspected risk factors. Deep learning (DL) and machine learning (ML) are current techniques for detecting and classifying dementia and making decisions without human participation. This study introduces a Leveraging Explainability Artificial Intelligence and Optimization Algorithm for Accurate Dementia Prediction and Classification Model (LXAIOA-ADPCM) technique in medical diagnosis. The main intention of the LXAIOA-ADPCM technique is to progress a novel algorithm for dementia prediction using advanced techniques. Initially, data normalization is performed by utilizing min-max normalization to convert input data into a beneficial format. Furthermore, the feature selection process is performed by implementing the naked mole-rat algorithm (NMRA) model. For the classification process, the proposed LXAIOA-ADPCM model implements ensemble classifiers such as the bidirectional long short-term memory (BiLSTM), sparse autoencoder (SAE), and temporal convolutional network (TCN) techniques. Finally, the hyperparameter selection of ensemble models is accomplished by utilizing the gazelle optimization algorithm (GOA) technique. Finally, the Grad-CAM is employed as an XAI technique to enhance transparency by providing human-understandable insights into their decision-making processes. A broad array of experiments using the LXAIOA-ADPCM technique is performed under the Dementia Prediction dataset. The simulation validation of the LXAIOA-ADPCM technique portrayed a superior accuracy output of 95.71% over existing models.

摘要

由于人口的快速老龄化,痴呆症在全球的患病率正在上升。痴呆症是一种复杂的疾病,通常由遗传和环境风险因素共同导致。目前尚无治疗痴呆症的方法;因此,早期发现和识别患痴呆症风险较高的人群变得至关重要,因为这可能带来改变生活方式以降低痴呆症风险的机会。在过去几年中,许多用于识别高危个体的痴呆症风险预测技术取得了进展。采用一种将人工智能可解释性(XAI)与复杂系统相结合的结构,将使我们能够对痴呆症发病率的分析因素进行分类,然后在调查中验证它们作为已识别或疑似风险因素的出现情况。深度学习(DL)和机器学习(ML)是当前用于检测和分类痴呆症并在无需人工参与的情况下做出决策的技术。本研究在医学诊断中引入了一种利用可解释性人工智能和优化算法的准确痴呆症预测与分类模型(LXAIOA - ADPCM)技术。LXAIOA - ADPCM技术的主要目的是使用先进技术开发一种用于痴呆症预测的新算法。首先,通过使用最小 - 最大归一化将输入数据转换为有益格式来执行数据归一化。此外,通过实施裸鼹鼠算法(NMRA)模型来执行特征选择过程。对于分类过程,所提出的LXAIOA - ADPCM模型采用了诸如双向长短期记忆(BiLSTM)、稀疏自编码器(SAE)和时间卷积网络(TCN)技术等集成分类器。最后,通过使用瞪羚优化算法(GOA)技术完成集成模型的超参数选择。最后,采用Grad - CAM作为一种XAI技术,通过提供对其决策过程的人类可理解的见解来提高透明度。在痴呆症预测数据集下使用LXAIOA - ADPCM技术进行了广泛的实验。LXAIOA - ADPCM技术的模拟验证显示,其准确率输出比现有模型高出95.71%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f726/12075694/75f328a9e189/41598_2025_97102_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验