Suppr超能文献

分析推特上与 JUUL 相关的帖子。

Characterizing JUUL-related posts on Twitter.

机构信息

Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.

Department of Computer Science, University of Southern California, Los Angeles, CA 90095, USA.

出版信息

Drug Alcohol Depend. 2018 Sep 1;190:1-5. doi: 10.1016/j.drugalcdep.2018.05.018. Epub 2018 Jun 23.

Abstract

BACKGROUND

As vaping rapidly becomes more prevalent, social media data can be harnessed to capture individuals' discussions of e-cigarette products quickly. The JUUL vaporizer is the latest advancement in e-cigarette technology, which delivers nicotine to the user from a device that is the size and shape of a thumb drive. Despite JUUL's growing popularity, little research has been conducted on JUUL. Here we utilized Twitter data to determine the public's early experiences with JUUL describing topics of posts.

METHODS

Twitter posts containing the term "JUUL" were obtained for 1 April 2107 to 14 December 2017. Text classifiers were used to identify topics in posts (n = 81,689).

RESULTS

The most prevalent topic wasPerson Tagging (use of @username to tag someone in a post) at 20.48% followed by Pods (mentions of JUUL's refill cartridge) at 14.72% and Buying (mentions of purchases) at 10.49%. The topic School (posts indicative of using JUUL or seeing someone use JUUL while at elementary, middle, or high school) comprised 3.66% of posts. The topic of Quit Smoking was rare at 0.29%.

CONCLUSIONS

Data from social media may be used to extend the surveillance of newly introduced vaping products. Findings suggest Twitter users are bonding around, and inquiring about, JUUL on social media. JUUL's discreetness may facilitate its use in places where vaping is prohibited. Educators may be in need of training on how to identify JUUL in the classroom. Despite JUUL's branding as a smoking alternative, very few Twitter users mentioned smoking cessation with JUUL.

摘要

背景

随着 vaping 的迅速普及,可以利用社交媒体数据快速捕捉到个人对电子烟产品的讨论。JUUL 蒸气器是电子烟技术的最新进展,它从一个大小和形状像拇指驱动器的设备向用户输送尼古丁。尽管 JUUL 的受欢迎程度不断提高,但对 JUUL 的研究很少。在这里,我们利用 Twitter 数据来确定公众对 JUUL 的早期体验,描述帖子的主题。

方法

从 2017 年 4 月 1 日至 12 月 14 日,获取了包含术语“JUUL”的 Twitter 帖子。使用文本分类器识别帖子中的主题(n=81689)。

结果

最常见的主题是 Person Tagging(在帖子中使用@username 标记某人),占 20.48%,其次是 Pods(提到 JUUL 的补充墨盒),占 14.72%,购买(提到购买),占 10.49%。主题 School(表示在小学、中学或高中使用 JUUL 或看到有人使用 JUUL 的帖子)占帖子的 3.66%。戒烟主题很少,占 0.29%。

结论

社交媒体数据可用于扩展对新引入的蒸气产品的监测。研究结果表明,Twitter 用户在社交媒体上围绕 JUUL 进行交流和询问。JUUL 的低调可能使其在禁止 vaping 的地方更容易使用。教育工作者可能需要接受如何在课堂上识别 JUUL 的培训。尽管 JUUL 被宣传为一种吸烟替代品,但很少有 Twitter 用户提到使用 JUUL 戒烟。

相似文献

1
Characterizing JUUL-related posts on Twitter.分析推特上与 JUUL 相关的帖子。
Drug Alcohol Depend. 2018 Sep 1;190:1-5. doi: 10.1016/j.drugalcdep.2018.05.018. Epub 2018 Jun 23.
2
JUUL: Spreading Online and Offline.JUUL:线上线下蔓延。
J Adolesc Health. 2018 Nov;63(5):582-586. doi: 10.1016/j.jadohealth.2018.08.002.
8
Nicotine delivery and cigarette equivalents from vaping a JUULpod.吸食 JUULpod 产生的尼古丁传递和香烟等效物。
Tob Control. 2022 Aug;31(e1):e88-e93. doi: 10.1136/tobaccocontrol-2020-056367. Epub 2021 Mar 24.

引用本文的文献

本文引用的文献

1
Could Social Bots Pose a Threat to Public Health?社交机器人会对公众健康构成威胁吗?
Am J Public Health. 2018 Aug;108(8):1005-1006. doi: 10.2105/AJPH.2018.304512.
2
Recognition, use and perceptions of JUUL among youth and young adults.青少年和青年对尤尔电子烟的认知、使用及看法。
Tob Control. 2019 Jan;28(1):115-116. doi: 10.1136/tobaccocontrol-2018-054273. Epub 2018 Apr 18.
3
On the popularity of the USB flash drive-shaped electronic cigarette Juul.关于U盘形状的电子烟Juul的流行情况。
Tob Control. 2019 Jan;28(1):110-112. doi: 10.1136/tobaccocontrol-2018-054259. Epub 2018 Apr 13.
5
Identifying Sentiment of Hookah-Related Posts on Twitter.识别推特上与水烟相关帖子的情感倾向。
JMIR Public Health Surveill. 2017 Oct 18;3(4):e74. doi: 10.2196/publichealth.8133.
8
Waterpipe Promotion and Use on Instagram: #Hookah.Instagram上的水烟推广与使用:#水烟壶
Nicotine Tob Res. 2017 Oct 1;19(10):1248-1252. doi: 10.1093/ntr/ntw329.
10
Pokémon GO-A New Distraction for Drivers and Pedestrians.《精灵宝可梦Go》——司机和行人的新干扰因素。
JAMA Intern Med. 2016 Dec 1;176(12):1865-1866. doi: 10.1001/jamainternmed.2016.6274.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验