Hatjispyros Spyridon J, Merkatas Christos
Department of Mathematics, University of the Aegean, Karlovassi 83200, Greece.
Chaos. 2019 Feb;29(2):023121. doi: 10.1063/1.5054656.
We propose a Bayesian nonparametric model based on Markov Chain Monte Carlo methods for the joint reconstruction and prediction of discrete time stochastic dynamical systems based on m-multiple time-series data, perturbed by additive dynamical noise. We introduce the Pairwise Dependent Geometric Stick-Breaking Reconstruction (PD-GSBR) model, which relies on the construction of an m-variate nonparametric prior over the space of densities supported over R. We are focusing on the case where at least one of the time-series has a sufficiently large sample size representation for an independent and accurate Geometric Stick-Breaking estimation, as defined in Merkatas et al. [Chaos 27, 063116 (2017)]. Our contention is that whenever the dynamical error processes perturbing the underlying dynamical systems share common characteristics, underrepresented data sets can benefit in terms of model estimation accuracy. The PD-GSBR estimation and prediction procedure is demonstrated specifically in the case of maps with polynomial nonlinearities of an arbitrary degree. Simulations based on synthetic time-series are presented.
我们提出了一种基于马尔可夫链蒙特卡罗方法的贝叶斯非参数模型,用于基于m个多时间序列数据对离散时间随机动力系统进行联合重建和预测,该系统受到加性动力噪声的干扰。我们引入了成对相依几何折断重建(PD-GSBR)模型,该模型依赖于在R上支持的密度空间上构建一个m元非参数先验。我们关注的情况是,如Merkatas等人[《混沌》27,063116(2017)]所定义的,至少有一个时间序列具有足够大的样本量表示,以便进行独立且准确的几何折断估计。我们的观点是,只要干扰基础动力系统的动力误差过程具有共同特征,数据量不足的数据集在模型估计精度方面就能受益。PD-GSBR估计和预测过程在具有任意次数多项式非线性的映射情况下进行了具体演示。给出了基于合成时间序列的模拟结果。