Department of Statistics and Actuarial-Financial Mathematics, University of the Aegean, Karlovassi 83200, Greece.
Chaos. 2019 Dec;29(12):123123. doi: 10.1063/1.5122187.
We propose a Bayesian nonparametric model based on Markov Chain Monte Carlo methods for unveiling the structure of the invariant global stable manifold from observed time-series data. The underlying unknown dynamical process could have been contaminated by additive noise. We introduce the Stable Manifold Geometric Stick Breaking Reconstruction model with which we reconstruct the unknown dynamic equations, while at the same time, we estimate the global structure of the perturbed stable manifold. Our method works for noninvertible maps without modifications. The stable manifold estimation procedure is demonstrated specifically in the case of polynomial maps. Simulations based on synthetic time-series are presented.
我们提出了一种基于马尔可夫链蒙特卡罗方法的贝叶斯非参数模型,用于从观测到的时间序列数据中揭示不变全局稳定流形的结构。潜在的未知动力过程可能受到了附加噪声的污染。我们引入了稳定流形几何棒断裂重建模型,用它来重建未知的动力方程,同时估计受扰稳定流形的全局结构。我们的方法在不做修改的情况下适用于不可逆变元。特别在多项式映射的情况下演示了稳定流形的估计过程。基于合成时间序列的仿真结果也被呈现出来。