Suppr超能文献

用于在线单模态和多模态医学图像配准的解剖合理模型和质量保证标准。

Anatomically plausible models and quality assurance criteria for online mono- and multi-modal medical image registration.

机构信息

Department of Radiotherapy, UMC Utrecht, Heidelberglaan 100, 3508 GA, Utrecht, Netherlands.

出版信息

Phys Med Biol. 2018 Aug 1;63(15):155016. doi: 10.1088/1361-6560/aad109.

Abstract

Medical imaging is currently employed in the diagnosis, planning, delivery and response monitoring of cancer treatments. Due to physiological motion and/or treatment response, the shape and location of the pathology and organs-at-risk may change over time. Establishing their location within the acquired images is therefore paramount for an accurate treatment delivery and monitoring. A feasible solution for tracking anatomical changes during an image-guided cancer treatment is provided by image registration algorithms. Such methods are, however, often built upon elements originating from the computer vision/graphics domain. Since the original design of such elements did not take into consideration the material properties of particular biological tissues, the anatomical plausibility of the estimated deformations may not be guaranteed. In the current work we adapt two existing variational registration algorithms, namely Horn-Schunck and EVolution, to online soft tissue tracking. This is achieved by enforcing an incompressibility constraint on the estimated deformations during the registration process. The existing and the modified registration methods were comparatively tested against several quality assurance criteria on abdominal in vivo MR and CT data. These criteria included: the Dice similarity coefficient (DSC), the Jaccard index, the target registration error (TRE) and three additional criteria evaluating the anatomical plausibility of the estimated deformations. Results demonstrated that both the original and the modified registration methods have similar registration capabilities in high-contrast areas, with DSC and Jaccard index values predominantly in the 0.8-0.9 range and an average TRE of 1.6-2.0 mm. In contrast-devoid regions of the liver and kidneys, however, the three additional quality assurance criteria have indicated a considerable improvement of the anatomical plausibility of the deformations estimated by the incompressibility-constrained methods. Moreover, the proposed registration models maintain the potential of the original methods for online image-based guidance of cancer treatments.

摘要

医学影像学目前被应用于癌症治疗的诊断、规划、实施和疗效监测。由于生理运动和/或治疗反应,病变和危及器官的形状和位置可能会随时间发生变化。因此,在获得的图像中确定它们的位置对于准确的治疗实施和监测至关重要。图像配准算法为跟踪图像引导癌症治疗过程中的解剖结构变化提供了可行的解决方案。然而,这些方法通常基于源自计算机视觉/图形领域的元素。由于这些元素的原始设计没有考虑到特定生物组织的材料特性,因此估计变形的解剖合理性可能无法得到保证。在当前的工作中,我们对两种现有的变分配准算法,即 Horn-Schunck 和 EVolution,进行了改编,使其能够在线跟踪软组织。这是通过在配准过程中对估计的变形施加不可压缩性约束来实现的。现有的和修改后的配准方法在腹部活体磁共振和 CT 数据上针对几个质量保证标准进行了比较测试。这些标准包括:Dice 相似系数(DSC)、Jaccard 指数、目标配准误差(TRE)以及另外三个评估估计变形的解剖合理性的标准。结果表明,原始和修改后的配准方法在高对比度区域具有相似的配准能力,DSC 和 Jaccard 指数值主要在 0.8-0.9 范围内,平均 TRE 为 1.6-2.0mm。然而,在肝脏和肾脏的对比度缺乏区域,三个额外的质量保证标准表明,不可压缩性约束方法估计的变形的解剖合理性有了显著提高。此外,所提出的配准模型保持了原始方法用于癌症治疗在线基于图像的引导的潜力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验