Clinical Neurosciences Division, National Center for PTSD, US Department of Veterans Affairs, West Haven, CT, USA.
Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA.
Neuropsychopharmacology. 2018 Sep;43(10):2154-2160. doi: 10.1038/s41386-018-0136-3. Epub 2018 Jun 28.
The ability of ketamine administration to activate prefrontal glutamate neurotransmission is thought to be a key mechanism contributing to its transient psychotomimetic effects and its delayed and sustained antidepressant effects. Rodent studies employing carbon-13 magnetic resonance spectroscopy (C MRS) methods have shown ketamine and other N-methyl-D-aspartate (NMDA) receptor antagonists to transiently increase measures reflecting glutamate-glutamine cycling and glutamate neurotransmission in the frontal cortex. However, there are not yet direct measures of glutamate neurotransmission in vivo in humans to support these hypotheses. The current first-level pilot study employed a novel prefrontal C MRS approach similar to that used in the rodent studies for direct measurement of ketamine effects on glutamate-glutamine cycling. Twenty-one participants (14 healthy and 7 depressed) completed two C MRS scans during infusion of normal saline or subanesthetic doses of ketamine. Compared to placebo, ketamine increased prefrontal glutamate-glutamine cycling, as indicated by a 13% increase in C glutamine enrichment (t = 2.4, p = 0.02). We found no evidence of ketamine effects on oxidative energy production, as reflected by C glutamate enrichment. During ketamine infusion, the ratio of C glutamate/glutamine enrichments, a putative measure of neurotransmission strength, was correlated with the Clinician-Administered Dissociative States Scale (r = -0.54, p = 0.048). These findings provide the most direct evidence in humans to date that ketamine increases glutamate release in the prefrontal cortex, a mechanism previously linked to schizophrenia pathophysiology and implicated in the induction of rapid antidepressant effects.
氯胺酮给药激活前额叶谷氨酸神经传递的能力被认为是其短暂的精神病样作用及其延迟和持续抗抑郁作用的关键机制。使用碳-13 磁共振波谱(CMRS)方法的啮齿动物研究表明,氯胺酮和其他 N-甲基-D-天冬氨酸(NMDA)受体拮抗剂会短暂增加反映前额叶皮层中谷氨酸-谷氨酰胺循环和谷氨酸神经传递的测量值。然而,目前还没有直接测量人类体内谷氨酸神经传递的方法来支持这些假设。目前的一级试点研究采用了一种类似于啮齿动物研究中使用的新型前额叶 CMRS 方法,用于直接测量氯胺酮对谷氨酸-谷氨酰胺循环的影响。21 名参与者(14 名健康和 7 名抑郁)在生理盐水或亚麻醉剂量的氯胺酮输注期间完成了两次 CMRS 扫描。与安慰剂相比,氯胺酮增加了前额叶谷氨酸-谷氨酰胺循环,表现为 C 谷氨酰胺丰度增加了 13%(t=2.4,p=0.02)。我们没有发现氯胺酮对氧化能量产生的影响的证据,这反映在 C 谷氨酸丰度上。在氯胺酮输注期间,C 谷氨酸/谷氨酰胺丰度比,一种神经传递强度的假定测量值,与临床医生管理的分离状态量表(Clinician-Administered Dissociative States Scale)呈负相关(r=-0.54,p=0.048)。这些发现提供了迄今为止人类最直接的证据,表明氯胺酮增加了前额叶皮层中谷氨酸的释放,这一机制与精神分裂症的病理生理学有关,并与快速抗抑郁作用的诱导有关。