Suppr超能文献

通过结合海洋藻类和产油真菌提高石油产量与采收率。

Enhancing oil production and harvest by combining the marine alga and the oleaginous fungus .

作者信息

Du Zhi-Yan, Alvaro Jonathan, Hyden Brennan, Zienkiewicz Krzysztof, Benning Nils, Zienkiewicz Agnieszka, Bonito Gregory, Benning Christoph

机构信息

1Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, MI 48824 USA.

2Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824 USA.

出版信息

Biotechnol Biofuels. 2018 Jun 22;11:174. doi: 10.1186/s13068-018-1172-2. eCollection 2018.

Abstract

BACKGROUND

Although microalgal biofuels have potential advantages over conventional fossil fuels, high production costs limit their application in the market. We developed bio-flocculation and incubation methods for the marine alga, CCMP1779, and the oleaginous fungus, AG77, resulting in increased oil productivity.

RESULTS

By growing separately and then combining the cells, the mycelium could efficiently capture due to an intricate cellular interaction between the two species leading to bio-flocculation. Use of a high-salt culture medium induced accumulation of triacylglycerol (TAG) and enhanced the contents of polyunsaturated fatty acids (PUFAs) including arachidonic acid and docosahexaenoic acid in . To increase TAG productivity in the alga, we developed an effective, reduced nitrogen-supply regime based on ammonium in environmental photobioreactors. Under optimized conditions, produced high levels of TAG that could be indirectly monitored by following chlorophyll content. Combining and to initiate bio-flocculation yielded high levels of TAG and total fatty acids, with ~ 15 and 22% of total dry weight (DW), respectively, as well as high levels of PUFAs. Genetic engineering of for higher TAG content in nutrient-replete medium was accomplished by overexpressing , a gene encoding the type II acyl-CoA:diacylglycerol acyltransferase 5. Combined with bio-flocculation, this approach led to increased production of TAG under nutrient-replete conditions (~ 10% of DW) compared to the wild type (~ 6% of DW).

CONCLUSIONS

The combined use of and with available genomes and genetic engineering tools for both species opens up new avenues to improve biofuel productivity and allows for the engineering of polyunsaturated fatty acids.

摘要

背景

尽管微藻生物燃料相较于传统化石燃料具有潜在优势,但高生产成本限制了其在市场上的应用。我们开发了针对海洋藻类CCMP1779和产油真菌AG77的生物絮凝和培养方法,从而提高了油脂生产率。

结果

通过分别培养然后将细胞混合,由于两种物种之间复杂的细胞相互作用导致生物絮凝,菌丝体能有效地捕获(此处原文似乎不完整)。使用高盐培养基可诱导三酰甘油(TAG)的积累,并提高(此处原文似乎不完整)中包括花生四烯酸和二十二碳六烯酸在内的多不饱和脂肪酸(PUFA)含量。为了提高藻类中TAG的生产率,我们在环境光生物反应器中开发了一种基于铵的有效低氮供应方案。在优化条件下,(此处原文似乎不完整)产生了高水平的TAG,可通过跟踪叶绿素含量进行间接监测。将(此处原文似乎不完整)和(此处原文似乎不完整)结合以引发生物絮凝,产生了高水平的TAG和总脂肪酸,分别占总干重(DW)的约15%和22%,以及高水平的PUFA。通过过表达编码II型酰基辅酶A:二酰甘油酰基转移酶5的基因,在营养丰富的培养基中对(此处原文似乎不完整)进行基因工程改造以提高TAG含量。与生物絮凝相结合,这种方法导致在营养丰富的条件下TAG产量比野生型(约占DW的6%)有所增加(约占DW的10%)。

结论

将(此处原文似乎不完整)和(此处原文似乎不完整)与两种物种可用的基因组和基因工程工具结合使用,为提高生物燃料生产率开辟了新途径,并允许对多不饱和脂肪酸进行工程改造。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/70bf/6013958/8b9727b9f4a6/13068_2018_1172_Fig5_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验