Powell Lydia C, Pritchard Manon F, Ferguson Elaine L, Powell Kate A, Patel Shree U, Rye Phil D, Sakellakou Stavroula-Melina, Buurma Niklaas J, Brilliant Charles D, Copping Jack M, Menzies Georgina E, Lewis Paul D, Hill Katja E, Thomas David W
1Advanced Therapies Group, Cardiff University School of Dentistry, Heath Park, Cardiff, CF14 4XY UK.
2AlgiPharma AS, Sandvika, Norway.
NPJ Biofilms Microbiomes. 2018 Jun 29;4:13. doi: 10.1038/s41522-018-0056-3. eCollection 2018.
Acquisition of a mucoid phenotype by sp. in the lungs of cystic fibrosis (CF) patients, with subsequent over-production of extracellular polymeric substance (EPS), plays an important role in mediating the persistence of multi-drug resistant (MDR) infections. The ability of a low molecular weight (Mn = 3200 g mol) alginate oligomer (OligoG CF-5/20) to modify biofilm structure of mucoid (NH57388A) was studied in vitro using scanning electron microscopy (SEM), confocal laser scanning microscopy (CLSM) with Texas Red (TxRd®)-labelled OligoG and EPS histochemical staining. Structural changes in treated biofilms were quantified using COMSTAT image-analysis software of CLSM z-stack images, and nanoparticle diffusion. Interactions between the oligomers, Ca and DNA were studied using molecular dynamics (MD) simulations, Fourier transform infrared spectroscopy (FTIR) and isothermal titration calorimetry (ITC). Imaging demonstrated that OligoG treatment (≥0.5%) inhibited biofilm formation, revealing a significant reduction in both biomass and biofilm height ( < 0.05). TxRd®-labelled oligomers readily diffused into established (24 h) biofilms. OligoG treatment (≥2%) induced alterations in the EPS of established biofilms; significantly reducing the structural quantities of EPS polysaccharides, and extracellular (e)DNA ( < 0.05) with a corresponding increase in nanoparticle diffusion ( < 0.05) and antibiotic efficacy against established biofilms. ITC demonstrated an absence of rapid complex formation between DNA and OligoG and confirmed the interactions of OligoG with Ca evident in FTIR and MD modelling. The ability of OligoG to diffuse into biofilms, potentiate antibiotic activity, disrupt DNA-Ca-DNA bridges and biofilm EPS matrix highlights its potential for the treatment of biofilm-related infections.
在囊性纤维化(CF)患者的肺部,某菌株获得黏液样表型并随后过量产生细胞外聚合物(EPS),在介导多重耐药(MDR)感染的持续存在中起重要作用。使用扫描电子显微镜(SEM)、用德克萨斯红(TxRd®)标记的海藻酸盐寡聚物进行共聚焦激光扫描显微镜(CLSM)以及EPS组织化学染色,在体外研究了低分子量(Mn = 3200 g/mol)海藻酸盐寡聚物(OligoG CF - 5/20)改变黏液样菌株(NH57388A)生物膜结构的能力。使用CLSM z-stack图像的COMSTAT图像分析软件和纳米颗粒扩散对处理后的生物膜结构变化进行定量。使用分子动力学(MD)模拟、傅里叶变换红外光谱(FTIR)和等温滴定量热法(ITC)研究寡聚物、钙和DNA之间的相互作用。成像表明,OligoG处理(≥0.5%)抑制生物膜形成,生物量和生物膜高度均显著降低(P < 0.05)。用TxRd®标记的寡聚物很容易扩散到已形成(24小时)的生物膜中。OligoG处理(≥2%)诱导已形成生物膜的EPS发生改变;显著降低EPS多糖和细胞外(e)DNA的结构量(P < 0.05),同时纳米颗粒扩散相应增加(P < 0.05),并且增强了对已形成生物膜的抗生素疗效。ITC证明DNA和OligoG之间不存在快速复合物形成,并证实了在FTIR和MD建模中明显的OligoG与钙的相互作用。OligoG扩散到生物膜中、增强抗生素活性、破坏DNA - Ca - DNA桥和生物膜EPS基质的能力突出了其治疗生物膜相关感染的潜力。