Grupo de Investigación e Innovación Alimentaria. Departamento de Tecnología de Alimentos, Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain.
Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Unidad Mixta Universitat Politècnica de València - Universitat de València. Departamento de Química, Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain.
J Food Sci. 2018 Aug;83(8):2140-2147. doi: 10.1111/1750-3841.14211. Epub 2018 Jul 6.
The objective of this work was on the one hand to assess the antibacterial activity of amines anchored to the external surface of mesoporous silica particles against Listeria monocytogenes in comparison with the same dose of free amines as well. It was also our aim to elucidate the mechanism of action of the new antimicrobial device. The suitability of silica nanoparticles to anchor, concentrate and improve the antimicrobial power of polyamines against L. monocytogenes has been demonstrated in a saline solution and in a food matrix. Moreover, through microscope observations it has been possible to determine that the attractive binding forces between the positive amine corona on the surface of nanoparticles and the negatively charged bacteria membrane provoke a disruption of the cell membrane. The surface concentration of amines on the surface of the nanoparticles is so effective that immobilized-amines were 100 times more effective in killing L. monocytogenes bacteria than the same amount of free polyamines. This novel approach for the creation of antimicrobial nanodevices opens the possibility to put in value the antimicrobial power of natural molecules that have been discarded because of its low antimicrobial power.
Consumers demand for high-quality products, free from chemical preservatives, with an extended shelf-life. In this study, a really powerful antimicrobial agent based on a nanomaterial functionalized with a non-antimicrobial organic molecule was developed as a proof of concept. Following this approach it could be possible to develop a new generation of natural and removable antimicrobials based on their anchoring to functional surfaces for food, agricultural or medical purposes.
本工作的目的一方面是评估锚定在介孔硅粒子外表面的胺类物质对李斯特菌的抗菌活性,并与相同剂量的游离胺类物质进行比较。我们的目的还在于阐明新型抗菌装置的作用机制。已经证明,在盐溶液和食品基质中,纳米二氧化硅颗粒适合于锚定、浓缩和提高多胺对李斯特菌的抗菌能力。此外,通过显微镜观察,可以确定纳米粒子表面正电荷胺冠与带负电荷的细菌膜之间的吸引力促使细胞膜破裂。纳米粒子表面上的胺的表面浓度非常有效,以至于固定化胺比相同数量的游离多胺在杀死李斯特菌方面有效 100 倍。这种用于创建抗菌纳米器件的新方法为利用因抗菌能力低而被丢弃的天然分子的抗菌能力提供了可能性。
消费者需要高质量的产品,不含化学防腐剂,保质期更长。在这项研究中,开发了一种真正强大的基于纳米材料的抗菌剂,该纳米材料用非抗菌有机分子进行了功能化,作为概念验证。通过这种方法,可以开发新一代基于其在食品、农业或医学用途的功能表面上的锚固的天然和可去除的抗菌剂。