Suppr超能文献

EMIF-AD 多模态生物标志物发现研究:设计、方法和队列特征。

The EMIF-AD Multimodal Biomarker Discovery study: design, methods and cohort characteristics.

机构信息

Alzheimer Centrum Limburg, Maastricht University, Maastricht, the Netherlands.

Department of Psychiatry & Neuropsychology, School for Mental Health and Neuroscience, Alzheimer Center Limburg, Maastricht University, Universiteitssingel 40, Box 34, P.O. Box 616, 6200, MD, Maastricht, the Netherlands.

出版信息

Alzheimers Res Ther. 2018 Jul 6;10(1):64. doi: 10.1186/s13195-018-0396-5.

Abstract

BACKGROUND

There is an urgent need for novel, noninvasive biomarkers to diagnose Alzheimer's disease (AD) in the predementia stages and to predict the rate of decline. Therefore, we set up the European Medical Information Framework for Alzheimer's Disease Multimodal Biomarker Discovery (EMIF-AD MBD) study. In this report we describe the design of the study, the methods used and the characteristics of the participants.

METHODS

Participants were selected from existing prospective multicenter and single-center European studies. Inclusion criteria were having normal cognition (NC) or a diagnosis of mild cognitive impairment (MCI) or AD-type dementia at baseline, age above 50 years, known amyloid-beta (Aβ) status, availability of cognitive test results and at least two of the following materials: plasma, DNA, magnetic resonance imaging (MRI) or cerebrospinal fluid (CSF). Targeted and untargeted metabolomic and proteomic analyses were performed in plasma, and targeted and untargeted proteomics were performed in CSF. Genome-wide SNP genotyping, next-generation sequencing and methylation profiling were conducted in DNA. Visual rating and volumetric measures were assessed on MRI. Baseline characteristics were analyzed using ANOVA or chi-square, rate of decline analyzed by linear mixed modeling.

RESULTS

We included 1221 individuals (NC n = 492, MCI n = 527, AD-type dementia n = 202) with a mean age of 67.9 (SD 8.3) years. The percentage Aβ+ was 26% in the NC, 58% in the MCI, and 87% in the AD-type dementia groups. Plasma samples were available for 1189 (97%) subjects, DNA samples for 929 (76%) subjects, MRI scans for 862 (71%) subjects and CSF samples for 767 (63%) subjects. For 759 (62%) individuals, clinical follow-up data were available. In each diagnostic group, the APOE ε4 allele was more frequent amongst Aβ+ individuals (p < 0.001). Only in MCI was there a difference in baseline Mini Mental State Examination (MMSE) score between the A groups (p < 0.001). Aβ+ had a faster rate of decline on the MMSE during follow-up in the NC (p < 0.001) and MCI (p < 0.001) groups.

CONCLUSIONS

The characteristics of this large cohort of elderly subjects at various cognitive stages confirm the central roles of Aβ and APOE ε4 in AD pathogenesis. The results of the multimodal analyses will provide new insights into underlying mechanisms and facilitate the discovery of new diagnostic and prognostic AD biomarkers. All researchers can apply for access to the EMIF-AD MBD data by submitting a research proposal via the EMIF-AD Catalog.

摘要

背景

目前迫切需要新的、非侵入性的生物标志物来在痴呆前期阶段诊断阿尔茨海默病(AD),并预测其下降速度。因此,我们建立了欧洲医学信息框架用于 AD 多模态生物标志物发现(EMIF-AD MBD)研究。在本报告中,我们描述了研究的设计、使用的方法和参与者的特征。

方法

参与者从现有的前瞻性多中心和单中心欧洲研究中选择。纳入标准为基线时认知正常(NC)或轻度认知障碍(MCI)或 AD 型痴呆诊断、年龄大于 50 岁、已知淀粉样蛋白-β(Aβ)状态、认知测试结果和以下至少两项可用:血浆、DNA、磁共振成像(MRI)或脑脊液(CSF)。在血浆中进行靶向和非靶向代谢组学和蛋白质组学分析,在 CSF 中进行靶向和非靶向蛋白质组学分析。在 DNA 中进行全基因组 SNP 基因分型、下一代测序和甲基化分析。在 MRI 上进行视觉评分和容积测量。使用 ANOVA 或卡方检验分析基线特征,使用线性混合模型分析下降率。

结果

我们纳入了 1221 名个体(NC n=492,MCI n=527,AD 型痴呆 n=202),平均年龄为 67.9(SD 8.3)岁。NC 组的 Aβ+百分比为 26%,MCI 组为 58%,AD 型痴呆组为 87%。1189 名(97%)受试者有血浆样本,929 名(76%)受试者有 DNA 样本,862 名(71%)受试者有 MRI 扫描,767 名(63%)受试者有 CSF 样本。759 名(62%)个体有临床随访数据。在每个诊断组中,APOE ε4 等位基因在 Aβ+个体中更为常见(p<0.001)。只有在 MCI 中,A 组之间的基线 Mini-Mental State Examination(MMSE)评分存在差异(p<0.001)。在随访过程中,NC(p<0.001)和 MCI(p<0.001)组中 Aβ+的 MMSE 下降速度更快。

结论

在各种认知阶段的大量老年受试者的特征证实了 Aβ和 APOE ε4 在 AD 发病机制中的核心作用。多模态分析的结果将为潜在机制提供新的见解,并有助于发现新的 AD 诊断和预后生物标志物。所有研究人员都可以通过在 EMIF-AD 目录中提交研究提案,申请访问 EMIF-AD MBD 数据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2fda/6035398/3a5e3e8e6bae/13195_2018_396_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验