Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN, USA.
Cortex. 2018 Aug;105:155-172. doi: 10.1016/j.cortex.2018.01.022. Epub 2018 Feb 27.
This article investigates whether, and how, an artificial intelligence (AI) system can be said to use visual, imagery-based representations in a way that is analogous to the use of visual mental imagery by people. In particular, this article aims to answer two fundamental questions about imagery-based AI systems. First, what might visual imagery look like in an AI system, in terms of the internal representations used by the system to store and reason about knowledge? Second, what kinds of intelligent tasks would an imagery-based AI system be able to accomplish? The first question is answered by providing a working definition of what constitutes an imagery-based knowledge representation, and the second question is answered through a literature survey of imagery-based AI systems that have been developed over the past several decades of AI research, spanning task domains of: 1) template-based visual search; 2) spatial and diagrammatic reasoning; 3) geometric analogies and matrix reasoning; 4) naive physics; and 5) commonsense reasoning for question answering. This article concludes by discussing three important open research questions in the study of visual-imagery-based AI systems-on evaluating system performance, learning imagery operators, and representing abstract concepts-and their implications for understanding human visual mental imagery.
本文探讨了人工智能(AI)系统是否以及如何能够以类似于人类使用视觉表象的方式使用基于视觉的表象表示。特别是,本文旨在回答关于基于图像的 AI 系统的两个基本问题。首先,就系统用于存储和推理知识的内部表示而言,基于图像的 AI 系统中的视觉表象可能是什么样子?其次,基于图像的 AI 系统能够完成哪些类型的智能任务?通过提供构成基于图像的知识表示的定义来回答第一个问题,通过对过去几十年的 AI 研究中开发的基于图像的 AI 系统的文献调查来回答第二个问题,涵盖了以下任务领域:1)基于模板的视觉搜索;2)空间和图表推理;3)几何类比和矩阵推理;4)朴素物理;以及 5)问答的常识推理。本文最后讨论了视觉表象 AI 系统研究中的三个重要开放性研究问题——评估系统性能、学习表象算子和表示抽象概念——及其对理解人类视觉表象的影响。