Suppr超能文献

在 PDMS 基底上的抗污光接枝两性离子涂层。

Antifouling Photograftable Zwitterionic Coatings on PDMS Substrates.

出版信息

Langmuir. 2019 Feb 5;35(5):1100-1110. doi: 10.1021/acs.langmuir.8b00838. Epub 2018 Aug 1.

Abstract

The foreign body response (FBR) to implantable materials can negatively impact performance of medical devices such as the cochlear implant. Engineering surfaces that resist the FBR could lead to enhanced functionality including potentially improving outcomes for cochlear implant recipients through reduction in fibrosis. In this work, we coat poly(dimethylsiloxane) (PDMS) surfaces with two zwitterionic polymers, poly(sulfobetaine methacrylate) (pSBMA) and poly(carboxybetaine methacrylate) (pCBMA), using a simultaneous photografting/photo-cross-linking process to produce a robust grafted zwitterionic hydrogel. reduce nonspecific protein adsorption, the first step of the FBR. The coating process uses benzophenone, a photografting agent and type II photoinitiator, to covalently link the cross-linked zwitterionic thin film to the PDMS surface. As the concentration of benzophenone on the surface increases, the adhesive strength of the zwitterionic thin films to PDMS surfaces increases as determined by shear adhesion. Additionally, with increased concentration of the adsorbed benzophenone, failure of the system changes from adhesive delamination to cohesive failure within the hydrogel, demonstrating that durable adhesive bonds are formed from the photografting process. Interestingly, antifouling properties of the zwitterionic polymers are preserved with significantly lower levels of nonspecific protein adsorption on zwitterion hydrogel-coated samples compared to uncoated controls. Fibroblast adhesion is also dramatically reduced on coated substrates. These results show that cross-linked pSBMA and pCBMA hydrogels can be readily photografted to PDMS substrates and show promise in potentially changing the fibrotic response to implanted biomaterials.

摘要

植入材料的异物反应(FBR)会对医疗器械的性能产生负面影响,例如耳蜗植入物。工程表面抵抗 FBR 可以提高功能,包括通过减少纤维化,潜在地改善耳蜗植入物接受者的结果。在这项工作中,我们使用同时光接枝/光交联过程将两种两性离子聚合物,聚(磺基甜菜碱甲基丙烯酸酯)(pSBMA)和聚(羧基甜菜碱甲基丙烯酸酯)(pCBMA)涂覆在聚二甲基硅氧烷(PDMS)表面上,以产生坚固的接枝两性离子水凝胶。减少非特异性蛋白质吸附,这是 FBR 的第一步。涂层过程使用苯并酮作为光接枝剂和 II 型光引发剂,将交联两性离子薄膜共价连接到 PDMS 表面。随着表面上苯并酮浓度的增加,通过剪切粘附确定,接枝两性离子薄膜对 PDMS 表面的粘附强度增加。此外,随着吸附苯并酮浓度的增加,系统的失效从水凝胶内的粘着分层变为内聚失效,这表明从光接枝过程形成了耐用的粘附键。有趣的是,与未涂层对照相比,两性离子聚合物的抗污特性得以保留,并且两性离子水凝胶涂层样品上的非特异性蛋白质吸附量明显降低。涂覆基底上的成纤维细胞粘附也大大减少。这些结果表明,交联的 pSBMA 和 pCBMA 水凝胶可以容易地光接枝到 PDMS 基底上,并有望潜在改变对植入生物材料的纤维反应。

相似文献

1
Antifouling Photograftable Zwitterionic Coatings on PDMS Substrates.
Langmuir. 2019 Feb 5;35(5):1100-1110. doi: 10.1021/acs.langmuir.8b00838. Epub 2018 Aug 1.
2
Antifouling and Mechanical Properties of Photografted Zwitterionic Hydrogel Thin-Film Coatings Depend on the Cross-Link Density.
ACS Biomater Sci Eng. 2021 Sep 13;7(9):4494-4502. doi: 10.1021/acsbiomaterials.1c00852. Epub 2021 Aug 4.
3
Photograftable Zwitterionic Coatings Prevent and Adhesion to PDMS Surfaces.
ACS Appl Bio Mater. 2021 Feb 15;4(2):1283-1293. doi: 10.1021/acsabm.0c01147. Epub 2021 Jan 22.
5
Suppressing surface reconstruction of superhydrophobic PDMS using a superhydrophilic zwitterionic polymer.
Biomacromolecules. 2012 May 14;13(5):1683-7. doi: 10.1021/bm300399s. Epub 2012 Apr 26.
6
Surface conjugation of zwitterionic polymers to inhibit cell adhesion and protein adsorption.
Colloids Surf B Biointerfaces. 2013 Jul 1;107:152-9. doi: 10.1016/j.colsurfb.2013.01.071. Epub 2013 Feb 18.
7
Temperature-triggered attachment and detachment of general human bio-foulants on zwitterionic polydimethylsiloxane.
J Mater Chem B. 2020 Oct 14;8(38):8853-8863. doi: 10.1039/d0tb01478h. Epub 2020 Sep 2.
8
New antifouling silica hydrogel.
Langmuir. 2012 Jun 26;28(25):9700-6. doi: 10.1021/la301561j. Epub 2012 Jun 7.
9
Photografted Zwitterionic Hydrogel Coating Durability for Reduced Foreign Body Response to Cochlear Implants.
ACS Appl Bio Mater. 2024 May 20;7(5):3124-3135. doi: 10.1021/acsabm.4c00156. Epub 2024 Apr 7.
10
Hemocompatibility of polyzwitterion-modified titanium dioxide nanotubes.
Nanotechnology. 2021 May 3;32(30). doi: 10.1088/1361-6528/abf0cb.

引用本文的文献

2
Enhancing Mucus Flow and Clearance by Grafting Zwitterionic Hydrogel Films to Luminal Surfaces.
Laryngoscope Investig Otolaryngol. 2025 Mar 7;10(2):e70118. doi: 10.1002/lio2.70118. eCollection 2025 Apr.
3
Decreasing the physical gap in the neural-electrode interface and related concepts to improve cochlear implant performance.
Front Neurosci. 2024 Jul 24;18:1425226. doi: 10.3389/fnins.2024.1425226. eCollection 2024.
4
Medical Device-Associated Biofilm Infections and Multidrug-Resistant Pathogens.
Pathogens. 2024 May 8;13(5):393. doi: 10.3390/pathogens13050393.
5
A surface-independent bioglue using photo-crosslinkable benzophenone moiety.
RSC Adv. 2024 Apr 23;14(19):12966-12976. doi: 10.1039/d4ra01866d. eCollection 2024 Apr 22.
6
Photografted Zwitterionic Hydrogel Coating Durability for Reduced Foreign Body Response to Cochlear Implants.
ACS Appl Bio Mater. 2024 May 20;7(5):3124-3135. doi: 10.1021/acsabm.4c00156. Epub 2024 Apr 7.
7
Recent Progress in antibacterial hydrogel coatings for targeting biofilm to prevent orthopedic implant-associated infections.
Front Microbiol. 2023 Dec 22;14:1343202. doi: 10.3389/fmicb.2023.1343202. eCollection 2023.
8
Controlled swelling of biomaterial devices for improved antifouling polymer coatings.
Sci Rep. 2023 Nov 15;13(1):19950. doi: 10.1038/s41598-023-47192-8.
9
Unveiling the Antifouling Potential of Stabilized Poly(phosphorus ylides).
ACS Macro Lett. 2023 Dec 19;12(12):1608-1613. doi: 10.1021/acsmacrolett.3c00524. Epub 2023 Nov 13.
10
Challenge of material haemocompatibility for microfluidic blood-contacting applications.
Front Bioeng Biotechnol. 2023 Aug 17;11:1249753. doi: 10.3389/fbioe.2023.1249753. eCollection 2023.

本文引用的文献

1
Photopolymerizable Zwitterionic Polymer Patterns Control Cell Adhesion and Guide Neural Growth.
Biomacromolecules. 2017 Aug 14;18(8):2389-2401. doi: 10.1021/acs.biomac.7b00579. Epub 2017 Jul 24.
2
The pattern and degree of capsular fibrous sheaths surrounding cochlear electrode arrays.
Hear Res. 2017 May;348:44-53. doi: 10.1016/j.heares.2017.02.012. Epub 2017 Feb 17.
3
Post Hybrid Cochlear Implant Hearing Loss and Endolymphatic Hydrops.
Otol Neurotol. 2016 Dec;37(10):1516-1521. doi: 10.1097/MAO.0000000000001199.
4
Different in vitro and in vivo behaviors between Poly(carboxybetaine methacrylate) and poly(sulfobetaine methacrylate).
Colloids Surf B Biointerfaces. 2016 Oct 1;146:888-94. doi: 10.1016/j.colsurfb.2016.07.016. Epub 2016 Jul 6.
6
Molecular understanding and design of zwitterionic materials.
Adv Mater. 2015 Jan 7;27(1):15-26. doi: 10.1002/adma.201404059. Epub 2014 Nov 4.
7
Modification of silicone elastomer with zwitterionic silane for durable antifouling properties.
Langmuir. 2014 Sep 30;30(38):11386-93. doi: 10.1021/la502486e. Epub 2014 Sep 16.
8
Intracochlear inflammatory response to cochlear implant electrodes in humans.
Otol Neurotol. 2014 Oct;35(9):1545-51. doi: 10.1097/MAO.0000000000000540.
9
Building an antifouling zwitterionic coating on urinary catheters using an enzymatically triggered bottom-up approach.
ACS Appl Mater Interfaces. 2014 Jul 23;6(14):11385-93. doi: 10.1021/am501961b. Epub 2014 Jul 3.
10
Recent advances of zwitterionic carboxybetaine materials and their derivatives.
J Biomater Sci Polym Ed. 2014;25(14-15):1502-13. doi: 10.1080/09205063.2014.927300. Epub 2014 Jun 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验