Biostatistics Research Branch, National Institute of Allergy and Infectious Diseases, Rockville, Maryland.
Department of Mathematics and Statistics, University of Maryland, Baltimore County, Baltimore, Maryland.
Stat Med. 2018 Nov 30;37(27):3991-4006. doi: 10.1002/sim.7890. Epub 2018 Jul 8.
For the two-sample problem, the Wilcoxon-Mann-Whitney (WMW) test is used frequently: it is simple to explain (a permutation test on the difference in mean ranks), it handles continuous or ordinal responses, it can be implemented for large or small samples, it is robust to outliers, it requires few assumptions, and it is efficient in many cases. Unfortunately, the WMW test is rarely presented with an effect estimate and confidence interval. A natural effect parameter associated with this test is the Mann-Whitney parameter, φ = Pr[ X<Y ] + 0.5 Pr[X = Y ]. Ideally, we desire confidence intervals on φ that are compatible with the WMW test, meaning the test rejects at level α if and only if the 100(1 - α)% confidence interval on the Mann-Whitney parameter excludes 1/2. Existing confidence interval procedures on φ are not compatible with the usual asymptotic implementation of the WMW test that uses a continuity correction nor are they compatible with exact WMW tests. We develop compatible confidence interval procedures for the asymptotic WMW tests and confidence interval procedures for some exact WMW tests that appear to be compatible. We discuss assumptions and interpretation of the resulting tests and confidence intervals. We provide the wmwTest function of the asht R package to calculate all of the developed confidence intervals.
对于两样本问题,Wilcoxon-Mann-Whitney(WMW)检验经常被使用:它易于解释(对平均秩差的置换检验),适用于连续或有序响应,可用于大样本或小样本,对离群值稳健,假设要求少,在许多情况下效率高。不幸的是,WMW 检验很少与效果估计和置信区间一起呈现。与该检验相关的自然效果参数是Mann-Whitney 参数,φ=Pr[X<Y]+0.5 Pr[X=Y]。理想情况下,我们希望置信区间φ与 WMW 检验兼容,即如果 Mann-Whitney 参数的 100(1-α)%置信区间排除 1/2,则检验在水平α处拒绝。现有的φ置信区间程序与通常使用连续性校正的 WMW 检验的渐近实施不兼容,也与精确的 WMW 检验不兼容。我们为渐近 WMW 检验开发了兼容的置信区间程序,并为一些似乎兼容的精确 WMW 检验开发了置信区间程序。我们讨论了所得检验和置信区间的假设和解释。我们提供了 asht R 包中的 wmwTest 函数来计算所有开发的置信区间。