Biostatistics Research Branch, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA.
Biometric Research Branch, DCTD, National Cancer Institute, Rockville, MD, USA.
Stat Med. 2018 Sep 10;37(20):2923-2937. doi: 10.1002/sim.7799. Epub 2018 May 17.
Although the P value from a Wilcoxon-Mann-Whitney test is used often with randomized experiments, it is rarely accompanied with a causal effect estimate and its confidence interval. The natural parameter for the Wilcoxon-Mann-Whitney test is the Mann-Whitney parameter, ϕ, which measures the probability that a randomly selected individual in the treatment arm will have a larger response than a randomly selected individual in the control arm (plus an adjustment for ties). We show that the Mann-Whitney parameter may be framed as a causal parameter and show that it is not equal to a closely related and nonidentifiable causal effect, ψ, the probability that a randomly selected individual will have a larger response under treatment than under control (plus an adjustment for ties). We review the paradox, first expressed by Hand, that the ψ parameter may imply that the treatment is worse (or better) than control, while the Mann-Whitney parameter shows the opposite. Unlike the Mann-Whitney parameter, ψ is nonidentifiable from a randomized experiment. We review some nonparametric assumptions that rule out Hand's paradox through bounds on ψ and use bootstrap methods to make inferences on those bounds. We explore the relationship of the proportional odds parameter to Hand's paradox, showing that the paradox may occur for proportional odds parameters between 1/9 and 9. Thus, large effects are needed to ensure that if treatment appears better by the Mann-Whitney parameter, then treatment improves responses in most individuals. We demonstrate these issues using a vaccine trial.
虽然 Wilcoxon-Mann-Whitney 检验的 P 值常用于随机实验,但它很少伴随因果效应估计及其置信区间。Wilcoxon-Mann-Whitney 检验的自然参数是 Mann-Whitney 参数ϕ,它衡量的是在治疗组中随机选择的个体的反应比对照组中随机选择的个体的反应更大的概率(加上对平局的调整)。我们表明,Mann-Whitney 参数可以被构造成因果参数,并表明它不等于一个密切相关且不可识别的因果效应ψ,即治疗组中随机选择的个体的反应大于对照组的概率(加上对平局的调整)。我们回顾了 Hand 首次表达的悖论,即 ψ 参数可能意味着治疗比对照差(或好),而 Mann-Whitney 参数则显示相反。与 Mann-Whitney 参数不同,ψ 不能从随机实验中识别。我们回顾了一些非参数假设,这些假设通过对 ψ 的限制排除了 Hand 的悖论,并使用自举方法对这些限制进行推断。我们探讨了比例优势参数与 Hand 悖论的关系,表明在 1/9 和 9 之间的比例优势参数可能会出现悖论。因此,需要大的效果来确保如果 Mann-Whitney 参数显示治疗效果更好,那么治疗会改善大多数人的反应。我们使用疫苗试验来说明这些问题。