Suppr超能文献

基于随机表示的新期望最大化型算法在截断正态数据分析中的应用,及其在生物医学中的应用。

New expectation-maximization-type algorithms via stochastic representation for the analysis of truncated normal data with applications in biomedicine.

机构信息

1 Department of Mathematics, Southern University of Science and Technology, Shenzhen City, P.R. China.

2 Department of Statistics and Actuarial Science, The University of Hong Kong, Hong Kong, P.R. China.

出版信息

Stat Methods Med Res. 2018 Aug;27(8):2459-2477. doi: 10.1177/0962280216681598. Epub 2016 Dec 13.

Abstract

To analyze univariate truncated normal data, in this paper, we stochastically represent the normal random variable as a mixture of a truncated normal random variable and its complementary random variable. This stochastic representation is a new idea and it is the first time to appear in literature. According to this stochastic representation, we derive important distributional properties for the truncated normal distribution and develop two new expectation-maximization algorithms to calculate the maximum likelihood estimates of parameters of interest for Type I data (without and with covariates) and Type II/III data. Bootstrap confidence intervals of parameters for small sample sizes are provided. To evaluate the performance of the proposed methods for the truncated normal distribution, in simulation studies, we first focus on the comparison of estimation results between including the unobserved data counts and excluding the unobserved data counts, and we next investigate the impact of the number of unobserved data on the estimation results. The plasma ferritin concentration data collected by Australian Institute of Sport and the blood fat content data are used to illustrate the proposed methods and to compare the truncated normal distribution with the half normal, the folded normal, and the folded normal slash distributions based on Akaike information criterion and Bayesian information criterion.

摘要

为了分析单变量截断正态数据,本文中,我们随机地将正态随机变量表示为截断正态随机变量及其补集的混合。这种随机表示是一个新的想法,它在文献中首次出现。根据这种随机表示,我们推导出了截断正态分布的重要分布性质,并开发了两种新的期望最大化算法,用于计算无协变量和有协变量的 I 型数据以及 II/III 型数据中感兴趣参数的最大似然估计。还提供了针对小样本量的参数的 Bootstrap 置信区间。为了评估截断正态分布的拟议方法的性能,在模拟研究中,我们首先关注包含和不包含未观测数据计数的估计结果之间的比较,然后研究未观测数据数量对估计结果的影响。澳大利亚运动学院收集的血浆铁蛋白浓度数据和血脂含量数据用于说明所提出的方法,并基于赤池信息量准则和贝叶斯信息量准则,将截断正态分布与半正态分布、折叠正态分布和折叠正态分布斜线分布进行比较。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验