University of Strasbourg, CNRS, ISIS UMR 7006, 8 allée Gaspard Monge, F-67000, Strasbourg, France.
Centro de Fisica de Materiales (CSIC-UPV/EHU), Paseo Manuel de Lardizabal 5, E-20018, Donostia, San Sebastián, Spain.
Nat Commun. 2018 Jul 9;9(1):2661. doi: 10.1038/s41467-018-04932-z.
Molecular switches enable the fabrication of multifunctional devices in which an electrical output can be modulated by external stimuli. The working mechanism of these devices is often hard to prove, since the molecular switching events are only indirectly confirmed through electrical characterization, without real-space visualization. Here, we show how photochromic molecules self-assembled on graphene and MoS generate atomically precise superlattices in which a light-induced structural reorganization enables precise control over local charge carrier density in high-performance devices. By combining different experimental and theoretical approaches, we achieve exquisite control over events taking place from the molecular level to the device scale. Unique device functionalities are demonstrated, including the use of spatially confined light irradiation to define reversible lateral heterojunctions between areas possessing different doping levels. Molecular assembly and light-induced doping are analogous for graphene and MoS, demonstrating the generality of our approach to optically manipulate the electrical output of multi-responsive hybrid devices.
分子开关使多功能器件的制造成为可能,其中电输出可以通过外部刺激来调节。这些器件的工作机制通常很难证明,因为分子开关事件仅通过电特性化间接确认,而没有实空间可视化。在这里,我们展示了在石墨烯和 MoS 上自组装的光致变色分子如何生成原子精确的超晶格,其中光诱导的结构重组使在高性能器件中对局部载流子密度进行精确控制成为可能。通过结合不同的实验和理论方法,我们实现了从分子水平到器件尺度的精细控制。展示了独特的器件功能,包括使用空间限制的光照射来定义具有不同掺杂水平的区域之间的可逆横向异质结。分子组装和光致掺杂对于石墨烯和 MoS 是类似的,证明了我们通过光学方法来操纵多响应混合器件的电输出的方法具有通用性。