Suppr超能文献

由石墨烯上的超分子格子形成的杂化范德华异质结构中的周期势。

Periodic potentials in hybrid van der Waals heterostructures formed by supramolecular lattices on graphene.

机构信息

University of Strasbourg, CNRS, ISIS UMR 7006, 8 Allée Gaspard Monge, F-67000 Strasbourg, France.

Laboratory for Chemistry of Novel Materials, Center for Research in Molecular Electronics and Photonics, University of Mons, Place du Parc 20, 7000 Mons, Belgium.

出版信息

Nat Commun. 2017 Mar 21;8:14767. doi: 10.1038/ncomms14767.

Abstract

The rise of 2D materials made it possible to form heterostructures held together by weak interplanar van der Waals interactions. Within such van der Waals heterostructures, the occurrence of 2D periodic potentials significantly modifies the electronic structure of single sheets within the stack, therefore modulating the material properties. However, these periodic potentials are determined by the mechanical alignment of adjacent 2D materials, which is cumbersome and time-consuming. Here we show that programmable 1D periodic potentials extending over areas exceeding 10 nm and stable at ambient conditions arise when graphene is covered by a self-assembled supramolecular lattice. The amplitude and sign of the potential can be modified without altering its periodicity by employing photoreactive molecules or their reaction products. In this regard, the supramolecular lattice/graphene bilayer represents the hybrid analogue of fully inorganic van der Waals heterostructures, highlighting the rich prospects that molecular design offers to create ad hoc materials.

摘要

二维材料的兴起使得由弱层间范德华相互作用结合的异质结构得以形成。在这种范德华异质结构中,二维周期性势的出现显著地改变了堆叠中单张薄片的电子结构,从而调节了材料的性能。然而,这些周期性势是由相邻二维材料的机械排列决定的,这一过程既繁琐又耗时。在这里,我们展示了当石墨烯被自组装超分子格子覆盖时,会出现可扩展至超过 10nm 且在环境条件下稳定的可编程一维周期性势。通过使用光反应性分子或其反应产物,可以在不改变周期性的情况下,对势的幅度和符号进行修改。在这方面,超分子格子/石墨烯双层结构代表了完全无机范德华异质结构的混合模拟,突出了分子设计为创造特定材料所提供的丰富前景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbd0/5364416/9ac490402024/ncomms14767-f1.jpg

相似文献

2
The van der Waals interaction and absorption and electron circular dichroism spectra of two-dimensional bilayer stacked structures.
Spectrochim Acta A Mol Biomol Spectrosc. 2023 Dec 15;303:123182. doi: 10.1016/j.saa.2023.123182. Epub 2023 Jul 22.
3
When 2D Materials Meet Molecules: Opportunities and Challenges of Hybrid Organic/Inorganic van der Waals Heterostructures.
Adv Mater. 2018 May;30(18):e1706103. doi: 10.1002/adma.201706103. Epub 2018 Feb 14.
4
Van der Waals Epitaxy of Two-Dimensional MoS2-Graphene Heterostructures in Ultrahigh Vacuum.
ACS Nano. 2015 Jun 23;9(6):6502-10. doi: 10.1021/acsnano.5b02345. Epub 2015 Jun 10.
5
Synthesis of AAB-Stacked Single-Crystal Graphene/hBN/Graphene Trilayer van der Waals Heterostructures by In Situ CVD.
Adv Sci (Weinh). 2022 Jul;9(21):e2201324. doi: 10.1002/advs.202201324. Epub 2022 May 26.
7
van der Waals Epitaxy of Soft Twisted Bilayers: Lattice Relaxation and Mass Density Waves.
ACS Nano. 2020 Oct 27;14(10):13441-13450. doi: 10.1021/acsnano.0c05310. Epub 2020 Sep 23.
8
Coincident-site lattice matching during van der Waals epitaxy.
Sci Rep. 2015 Dec 14;5:18079. doi: 10.1038/srep18079.
9
Stable Silicene in Graphene/Silicene Van der Waals Heterostructures.
Adv Mater. 2018 Dec;30(49):e1804650. doi: 10.1002/adma.201804650. Epub 2018 Oct 8.
10
Fano Resonance in Near-Field Thermal Radiation of Two-Dimensional Van der Waals Heterostructures.
Nanomaterials (Basel). 2023 Apr 20;13(8):1425. doi: 10.3390/nano13081425.

引用本文的文献

3
Janus 2D materials asymmetric molecular functionalization.
Chem Sci. 2021 Nov 19;13(2):315-328. doi: 10.1039/d1sc05836c. eCollection 2022 Jan 5.
5
A Matter of Size and Placement: Varying the Patch Size of Anisotropic Patchy Colloids.
Int J Mol Sci. 2020 Nov 16;21(22):8621. doi: 10.3390/ijms21228621.
6
Phytotoxicity of Graphene Family Nanomaterials and Its Mechanisms: A Review.
Front Chem. 2019 May 1;7:292. doi: 10.3389/fchem.2019.00292. eCollection 2019.
7
Quantitative determination of a model organic/insulator/metal interface structure.
Nanoscale. 2018 Nov 29;10(46):21971-21977. doi: 10.1039/c8nr06387g.
9
Activating the molecular spinterface.
Nat Mater. 2017 Apr 25;16(5):507-515. doi: 10.1038/nmat4902.

本文引用的文献

1
Epitaxially Self-Assembled Alkane Layers for Graphene Electronics.
Adv Mater. 2017 Feb;29(5). doi: 10.1002/adma.201603925. Epub 2016 Dec 1.
2
Tuning charge and correlation effects for a single molecule on a graphene device.
Nat Commun. 2016 Nov 25;7:13553. doi: 10.1038/ncomms13553.
3
Tunable doping of graphene by using physisorbed self-assembled networks.
Nanoscale. 2016 Dec 8;8(48):20017-20026. doi: 10.1039/c6nr07912a.
4
Mixed-dimensional van der Waals heterostructures.
Nat Mater. 2017 Feb;16(2):170-181. doi: 10.1038/nmat4703. Epub 2016 Aug 1.
5
2D materials and van der Waals heterostructures.
Science. 2016 Jul 29;353(6298):aac9439. doi: 10.1126/science.aac9439.
6
Photo-thermionic effect in vertical graphene heterostructures.
Nat Commun. 2016 Jul 14;7:12174. doi: 10.1038/ncomms12174.
7
Self-Assembly of Graphene Single Crystals with Uniform Size and Orientation: The First 2D Super-Ordered Structure.
J Am Chem Soc. 2016 Jun 29;138(25):7812-5. doi: 10.1021/jacs.6b03208. Epub 2016 Jun 21.
9
Evidence for a fractional fractal quantum Hall effect in graphene superlattices.
Science. 2015 Dec 4;350(6265):1231-4. doi: 10.1126/science.aad2102.
10
Hybrid, Gate-Tunable, van der Waals p-n Heterojunctions from Pentacene and MoS2.
Nano Lett. 2016 Jan 13;16(1):497-503. doi: 10.1021/acs.nanolett.5b04141. Epub 2015 Dec 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验