Suppr超能文献

使用回答集编程设计基于miRNA的合成细胞分类器电路。

Designing miRNA-Based Synthetic Cell Classifier Circuits Using Answer Set Programming.

作者信息

Becker Katinka, Klarner Hannes, Nowicka Melania, Siebert Heike

机构信息

Department of Mathematics and Computer Science, Freie Universität Berlin, Berlin, Germany.

IMPRS-CBSC, Max Planck Institute for Molecular Genetics, Berlin, Germany.

出版信息

Front Bioeng Biotechnol. 2018 Jun 22;6:70. doi: 10.3389/fbioe.2018.00070. eCollection 2018.

Abstract

Cell classifier circuits are synthetic biological circuits capable of distinguishing between different cell states depending on specific cellular markers and engendering a state-specific response. An example are classifiers for cancer cells that recognize whether a cell is healthy or diseased based on its miRNA fingerprint and trigger cell apoptosis in the latter case. Binarization of continuous miRNA expression levels allows to formalize a classifier as a Boolean function whose output codes for the cell condition. In this framework, the classifier design problem consists of finding a Boolean function capable of reproducing correct labelings of miRNA profiles. The specifications of such a function can then be used as a blueprint for constructing a corresponding circuit in the lab. To find an optimal classifier both in terms of performance and reliability, however, accuracy, design simplicity and constraints derived from availability of molcular building blocks for the classifiers all need to be taken into account. These complexities translate to computational difficulties, so currently available methods explore only part of the design space and consequently are only capable of calculating locally optimal designs. We present a computational approach for finding globally optimal classifier circuits based on binarized miRNA datasets using Answer Set Programming for efficient scanning of the entire search space. Additionally, the method is capable of computing all optimal solutions, allowing for comparison between optimal classifier designs and identification of key features. Several case studies illustrate the applicability of the approach and highlight the quality of results in comparison with a state of the art method. The method is fully implemented and a comprehensive performance analysis demonstrates its reliability and scalability.

摘要

细胞分类器电路是一种合成生物电路,能够根据特定的细胞标志物区分不同的细胞状态,并产生特定状态的反应。例如癌细胞分类器,它基于细胞的微小RNA指纹识别细胞是健康还是患病,并在后一种情况下触发细胞凋亡。连续微小RNA表达水平的二值化允许将分类器形式化为一个布尔函数,其输出编码细胞状态。在此框架下,分类器设计问题在于找到一个能够重现微小RNA谱正确标记的布尔函数。然后,这种函数的规范可作为在实验室构建相应电路的蓝图。然而,为了在性能和可靠性方面找到最优分类器,需要考虑准确性、设计简单性以及分类器分子构建块可用性所带来的限制。这些复杂性转化为计算难题,因此目前可用的方法仅探索了部分设计空间,仅能计算局部最优设计。我们提出一种计算方法,使用回答集编程基于二值化微小RNA数据集找到全局最优分类器电路,以有效扫描整个搜索空间。此外,该方法能够计算所有最优解,允许对最优分类器设计进行比较并识别关键特征。几个案例研究说明了该方法的适用性,并突出了与现有方法相比的结果质量。该方法已完全实现,全面的性能分析证明了其可靠性和可扩展性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9594/6023966/1f87cf2f25ae/fbioe-06-00070-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验