Suppr超能文献

基于源灌注 MRI 预测急性脑卒中出血性转化严重程度。

Prediction of Hemorrhagic Transformation Severity in Acute Stroke From Source Perfusion MRI.

出版信息

IEEE Trans Biomed Eng. 2018 Sep;65(9):2058-2065. doi: 10.1109/TBME.2017.2783241. Epub 2017 Dec 20.

Abstract

OBJECTIVE

Hemorrhagic transformation (HT) is the most severe complication of reperfusion therapy in acute ischemic stroke (AIS) patients. Management of AIS patients could benefit from accurate prediction of upcoming HT. While prediction of HT occurrence has recently provided encouraging results, the prediction of the severity and territory of the HT could bring valuable insights that are beyond current methods.

METHODS

This study tackles these issues and aims to predict the spatial occurrence of HT in AIS from perfusion-weighted magnetic resonance imaging (PWI) combined with diffusion weighted imaging. In all, 165 patients were included in this study and analyzed retrospectively from a cohort of AIS patients treated with reperfusion therapy in a single stroke center.

RESULTS

Machine learning models are compared within our framework; support vector machines, linear regression, decision trees, neural networks, and kernel spectral regression were applied to the dataset. Kernel spectral regression performed best with an accuracy of $\text{83.7} \pm \text{2.6}%$.

CONCLUSION

The key contribution of our framework formalize HT prediction as a machine learning problem. Specifically, the model learns to extract imaging markers of HT directly from source PWI images rather than from pre-established metrics.

SIGNIFICANCE

Predictions visualized in terms of spatial likelihood of HT in various territories of the brain were evaluated against follow-up gradient recalled echo and provide novel insights for neurointerventionalists prior to endovascular therapy.

摘要

目的

再灌注治疗后的出血性转化(HT)是急性缺血性脑卒中(AIS)患者最严重的并发症。对 AIS 患者的管理可以从对即将发生的 HT 的准确预测中获益。虽然 HT 发生的预测最近取得了令人鼓舞的结果,但对 HT 的严重程度和部位的预测可以带来超出当前方法的有价值的见解。

方法

本研究解决了这些问题,旨在从灌注加权磁共振成像(PWI)与弥散加权成像相结合的角度预测 AIS 中的 HT 空间发生情况。总共纳入了 165 例患者,对来自单一卒中中心接受再灌注治疗的 AIS 患者队列进行回顾性分析。

结果

在我们的框架内比较了机器学习模型;支持向量机、线性回归、决策树、神经网络和核谱回归被应用于数据集。核谱回归的准确率最高,为 83.7±2.6%。

结论

我们的框架的主要贡献是将 HT 预测形式化为机器学习问题。具体来说,该模型学会了直接从源 PWI 图像中提取 HT 的成像标志物,而不是从预先建立的指标中提取。

意义

根据梯度回波随访对大脑各个部位 HT 发生的空间可能性进行预测,并在血管内治疗前为神经介入医生提供新的见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验