Suppr超能文献

基于反向图嵌入的主图和结构学习。

Principal Graph and Structure Learning Based on Reversed Graph Embedding.

出版信息

IEEE Trans Pattern Anal Mach Intell. 2017 Nov;39(11):2227-2241. doi: 10.1109/TPAMI.2016.2635657. Epub 2016 Dec 5.

Abstract

Many scientific datasets are of high dimension, and the analysis usually requires retaining the most important structures of data. Principal curve is a widely used approach for this purpose. However, many existing methods work only for data with structures that are mathematically formulated by curves, which is quite restrictive for real applications. A few methods can overcome the above problem, but they either require complicated human-made rules for a specific task with lack of adaption flexibility to different tasks, or cannot obtain explicit structures of data. To address these issues, we develop a novel principal graph and structure learning framework that captures the local information of the underlying graph structure based on reversed graph embedding. As showcases, models that can learn a spanning tree or a weighted undirected `1 graph are proposed, and a new learning algorithm is developed that learns a set of principal points and a graph structure from data, simultaneously. The new algorithm is simple with guaranteed convergence. We then extend the proposed framework to deal with large-scale data. Experimental results on various synthetic and six real world datasets show that the proposed method compares favorably with baselines and can uncover the underlying structure correctly.

摘要

许多科学数据集具有高维特性,分析通常需要保留数据的最重要结构。主曲线是一种广泛用于此目的的方法。然而,许多现有的方法仅适用于结构可以通过曲线进行数学公式化的数据,这对于实际应用来说限制很大。有一些方法可以克服上述问题,但它们要么需要针对特定任务的复杂人为规则,缺乏对不同任务的适应灵活性,要么无法获得数据的显式结构。为了解决这些问题,我们开发了一种新的主图和结构学习框架,该框架基于反向图嵌入来捕获底层图结构的局部信息。作为展示,提出了可以学习生成树或加权无向图的模型,并开发了一种新的学习算法,可以从数据中同时学习一组主点和图结构。新算法简单且保证收敛。然后,我们将提出的框架扩展到处理大规模数据。在各种合成和六个真实世界数据集上的实验结果表明,该方法与基线相比具有优势,并且可以正确揭示潜在结构。

相似文献

1
Principal Graph and Structure Learning Based on Reversed Graph Embedding.
IEEE Trans Pattern Anal Mach Intell. 2017 Nov;39(11):2227-2241. doi: 10.1109/TPAMI.2016.2635657. Epub 2016 Dec 5.
2
Probabilistic Dimensionality Reduction via Structure Learning.
IEEE Trans Pattern Anal Mach Intell. 2019 Jan;41(1):205-219. doi: 10.1109/TPAMI.2017.2785402. Epub 2017 Dec 19.
3
Discriminative graph embedding for label propagation.
IEEE Trans Neural Netw. 2011 Sep;22(9):1395-405. doi: 10.1109/TNN.2011.2160873. Epub 2011 Jul 22.
4
Submanifold-Preserving Discriminant Analysis With an Auto-Optimized Graph.
IEEE Trans Cybern. 2020 Aug;50(8):3682-3695. doi: 10.1109/TCYB.2019.2910751. Epub 2019 Apr 26.
5
Rank-Constrained Spectral Clustering With Flexible Embedding.
IEEE Trans Neural Netw Learn Syst. 2018 Dec;29(12):6073-6082. doi: 10.1109/TNNLS.2018.2817538. Epub 2018 Apr 19.
6
Learning a Nonnegative Sparse Graph for Linear Regression.
IEEE Trans Image Process. 2015 Sep;24(9):2760-71. doi: 10.1109/TIP.2015.2425545.
7
Multi-Task Network Representation Learning.
Front Neurosci. 2020 Jan 23;14:1. doi: 10.3389/fnins.2020.00001. eCollection 2020.
8
Learning Low-Dimensional Latent Graph Structures: A Density Estimation Approach.
IEEE Trans Neural Netw Learn Syst. 2020 Apr;31(4):1098-1112. doi: 10.1109/TNNLS.2019.2917696. Epub 2019 Jun 18.
9
Learning a discriminant graph-based embedding with feature selection for image categorization.
Neural Netw. 2019 Mar;111:35-46. doi: 10.1016/j.neunet.2018.12.008. Epub 2018 Dec 27.
10
Regularization of Mixture Models for Robust Principal Graph Learning.
IEEE Trans Pattern Anal Mach Intell. 2022 Dec;44(12):9119-9130. doi: 10.1109/TPAMI.2021.3124973. Epub 2022 Nov 7.

引用本文的文献

1
FLASC: a flare-sensitive clustering algorithm.
PeerJ Comput Sci. 2025 Apr 18;11:e2792. doi: 10.7717/peerj-cs.2792. eCollection 2025.
2
Microglia and CD8+ T cell activation precede neuronal loss in a murine model of spastic paraplegia 15.
J Exp Med. 2025 Jul 7;222(7). doi: 10.1084/jem.20232357. Epub 2025 Apr 23.
3
Trajectory Inference for Single Cell Omics.
ArXiv. 2025 Feb 13:arXiv:2502.09354v1.
5
8
Inferring evolutionary trajectories from cross-sectional transcriptomic data to mirror lung adenocarcinoma progression.
PLoS Comput Biol. 2023 May 25;19(5):e1011122. doi: 10.1371/journal.pcbi.1011122. eCollection 2023 May.
10
RobustTree: An adaptive, robust PCA algorithm for embedded tree structure recovery from single-cell sequencing data.
Front Genet. 2023 Mar 8;14:1110899. doi: 10.3389/fgene.2023.1110899. eCollection 2023.

本文引用的文献

1
Cancer progression modeling using static sample data.
Genome Biol. 2014 Aug 26;15(8):440. doi: 10.1186/s13059-014-0440-0.
2
The molecular profile of luminal B breast cancer.
Biologics. 2012;6:289-97. doi: 10.2147/BTT.S29923. Epub 2012 Aug 24.
3
The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups.
Nature. 2012 Apr 18;486(7403):346-52. doi: 10.1038/nature10983.
4
Clonal evolution in cancer.
Nature. 2012 Jan 18;481(7381):306-13. doi: 10.1038/nature10762.
5
Topology based data analysis identifies a subgroup of breast cancers with a unique mutational profile and excellent survival.
Proc Natl Acad Sci U S A. 2011 Apr 26;108(17):7265-70. doi: 10.1073/pnas.1102826108. Epub 2011 Apr 11.
6
A framework for feature selection in clustering.
J Am Stat Assoc. 2010 Jun 1;105(490):713-726. doi: 10.1198/jasa.2010.tm09415.
7
Principal manifolds and graphs in practice: from molecular biology to dynamical systems.
Int J Neural Syst. 2010 Jun;20(3):219-32. doi: 10.1142/S0129065710002383.
8
Learning with l1-graph for image analysis.
IEEE Trans Image Process. 2010 Apr;19(4):858-66. doi: 10.1109/TIP.2009.2038764. Epub 2009 Dec 22.
9
Supervised risk predictor of breast cancer based on intrinsic subtypes.
J Clin Oncol. 2009 Mar 10;27(8):1160-7. doi: 10.1200/JCO.2008.18.1370. Epub 2009 Feb 9.
10
Spectral grouping using the Nyström method.
IEEE Trans Pattern Anal Mach Intell. 2004 Feb;26(2):214-25. doi: 10.1109/TPAMI.2004.1262185.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验