IEEE/ACM Trans Comput Biol Bioinform. 2019 Mar-Apr;16(2):510-523. doi: 10.1109/TCBB.2017.2781724. Epub 2017 Dec 11.
We present an elaborate framework for formally modelling pathways in chemical reaction networks on a mechanistic level. Networks are modelled mathematically as directed multi-hypergraphs, with vertices corresponding to molecules and hyperedges to reactions. Pathways are modelled as integer hyperflows and we expand the network model by detailed routing constraints. In contrast to the more traditional approaches like Flux Balance Analysis or Elementary Mode analysis we insist on integer-valued flows. While this choice makes it necessary to solve possibly hard integer linear programs, it has the advantage that more detailed mechanistic questions can be formulated. It is thus possible to query networks for general transformation motifs, and to automatically enumerate optimal and near-optimal pathways. Similarities and differences between our work and traditional approaches in metabolic network analysis are discussed in detail. To demonstrate the applicability of the mathematical framework to real-life problems we first explore the design space of possible non-oxidative glycolysis pathways and show that recent manually designed pathways can be further optimized. We then use a model of sugar chemistry to investigate pathways in the autocatalytic formose process. A graph transformation-based approach is used to automatically generate the reaction networks of interest.
我们提出了一个精心设计的框架,用于在机械水平上对化学反应网络中的途径进行形式化建模。网络以有向多超图的形式进行数学建模,其中顶点对应于分子,超边对应于反应。途径被建模为整数超流,我们通过详细的路由约束扩展网络模型。与通量平衡分析或基本模式分析等更传统的方法不同,我们坚持使用整数值流。虽然这种选择使得解决可能的困难整数线性规划成为必要,但它具有可以提出更详细的机械问题的优点。因此,可以查询网络以获取一般的转换模式,并自动枚举最佳和接近最佳的途径。详细讨论了我们的工作与代谢网络分析中传统方法之间的相似之处和差异。为了展示数学框架在实际问题中的适用性,我们首先探索了可能的非氧化糖酵解途径的设计空间,并表明最近设计的人工途径可以进一步优化。然后,我们使用糖化学模型研究了自催化形式糖过程中的途径。基于图变换的方法用于自动生成感兴趣的反应网络。