From the Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, c/ Nicolás Cabrera 1, Campus de Cantoblanco, 28049 Madrid, Spain.
From the Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, c/ Nicolás Cabrera 1, Campus de Cantoblanco, 28049 Madrid, Spain
J Biol Chem. 2018 Aug 31;293(35):13351-13363. doi: 10.1074/jbc.RA118.004324. Epub 2018 Jul 10.
During reverse transcription of the HIV-1 genome, two strand-transfer events occur. Both events rely on the RNase H cleavage activity of reverse transcriptases (RTs) and template homology. Using a panel of mutants of HIV-1 (group M/subtype B) and HIV-1 (group O) RTs and assays, we demonstrate that there is a strong correlation between RT minus-strand transfer efficiency and template-primer binding affinity. The highest strand transfer efficiencies were obtained with HIV-1 RT mutants containing the substitutions K358R/A359G/S360A, alone or in combination with V148I or T355A/Q357M. These HIV-1 RT mutants had been previously engineered to increase their DNA polymerase activity at high temperatures. Now, we found that RTs containing RNase H-inactivating mutations (D443N or E478Q) were devoid of strand transfer activity, whereas enzymes containing F61A or L92P had very low strand transfer activity. The strand transfer defect produced by L92P was attributed to a loss of template-primer binding affinity and, more specifically, to the higher dissociation rate constants () shown by RTs bearing this substitution. Although L92P also deleteriously affected the RT's nontemplated nucleotide addition activity, neither nontemplated nucleotide addition activity nor the RT's clamp activities contributed to increased template switching when all tested mutant and WT RTs were considered. Interestingly, our results also revealed an association between efficient strand transfer and the generation of secondary cleavages in the donor RNA, consistent with the creation of invasion sites. Exposure of the elongated DNA at these sites facilitate acceptor (RNA or DNA) binding and promote template switching.
在 HIV-1 基因组的逆转录过程中,会发生两次链转移事件。这两个事件都依赖于逆转录酶(RT)的 RNase H 切割活性和模板同源性。利用一组 HIV-1(M 组/亚型 B)和 HIV-1(O 组)RT 的突变体和测定方法,我们证明 RT 负链转移效率与模板-引物结合亲和力之间存在很强的相关性。使用含有 K358R/A359G/S360A 取代的 HIV-1 RT 突变体,或与 V148I 或 T355A/Q357M 联合使用,可获得最高的链转移效率。这些 HIV-1 RT 突变体之前被设计用于提高其在高温下的 DNA 聚合酶活性。现在,我们发现含有 RNase H 失活突变(D443N 或 E478Q)的 RT 没有链转移活性,而含有 F61A 或 L92P 的酶的链转移活性非常低。L92P 产生的链转移缺陷归因于模板-引物结合亲和力的丧失,更具体地说,归因于携带该取代的 RT 的更高的解离速率常数()。尽管 L92P 也对 RT 的非模板核苷酸添加活性产生有害影响,但在考虑所有测试的突变体和 WT RT 时,非模板核苷酸添加活性或 RT 的夹钳活性都不会导致模板切换增加。有趣的是,我们的结果还揭示了有效的链转移与供体 RNA 中二次切割的产生之间存在关联,这与入侵位点的产生一致。这些位点处伸长的 DNA 的暴露促进了受体(RNA 或 DNA)的结合,并促进了模板切换。