Suppr超能文献

基于扩张全卷积网络的病理性肺组织语义分割。

Semantic Segmentation of Pathological Lung Tissue With Dilated Fully Convolutional Networks.

出版信息

IEEE J Biomed Health Inform. 2019 Mar;23(2):714-722. doi: 10.1109/JBHI.2018.2818620. Epub 2018 Mar 26.

Abstract

Early and accurate diagnosis of interstitial lung diseases (ILDs) is crucial for making treatment decisions, but can be challenging even for experienced radiologists. The diagnostic procedure is based on the detection and recognition of the different ILD pathologies in thoracic CT scans, yet their manifestation often appears similar. In this study, we propose the use of a deep purely convolutional neural network for the semantic segmentation of ILD patterns, as the basic component of a computer aided diagnosis system for ILDs. The proposed CNN, which consists of convolutional layers with dilated filters, takes as input a lung CT image of arbitrary size and outputs the corresponding label map. We trained and tested the network on a data set of 172 sparsely annotated CT scans, within a cross-validation scheme. The training was performed in an end-to-end and semisupervised fashion, utilizing both labeled and nonlabeled image regions. The experimental results show significant performance improvement with respect to the state of the art.

摘要

早期、准确地诊断间质性肺病(ILD)对于治疗决策至关重要,但即使是经验丰富的放射科医生也可能面临挑战。诊断过程基于在胸部 CT 扫描中检测和识别不同的ILD 病理,但它们的表现通常相似。在这项研究中,我们提出使用深度纯粹卷积神经网络对ILD 模式进行语义分割,作为ILD 计算机辅助诊断系统的基本组成部分。所提出的 CNN 由带有扩张滤波器的卷积层组成,它接受任意大小的肺部 CT 图像作为输入,并输出相应的标签图。我们在一个由 172 个稀疏注释 CT 扫描组成的数据集上,在交叉验证方案中进行了网络的训练和测试。训练是在端到端和半监督的方式下进行的,利用了有标签和无标签的图像区域。实验结果表明,与现有技术相比,性能有了显著提高。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验