Suppr超能文献

用于超声图像中多种组织学类型卵巢肿瘤分类的深度卷积神经网络

Deep convolutional neural networks for multiple histologic types of ovarian tumors classification in ultrasound images.

作者信息

Wu Meijing, Cui Guangxia, Lv Shuchang, Chen Lijiang, Tian Zongmei, Yang Min, Bai Wenpei

机构信息

The Department of Gynecology and Obstetrics, Beijing Shijitan Hospital, Capital Medical University, Beijing, China.

The Department of Electronics and Information Engineering, Beihang University, Beijing, China.

出版信息

Front Oncol. 2023 Jun 23;13:1154200. doi: 10.3389/fonc.2023.1154200. eCollection 2023.

Abstract

OBJECTIVE

This study aimed to evaluate and validate the performance of deep convolutional neural networks when discriminating different histologic types of ovarian tumor in ultrasound (US) images.

MATERIAL AND METHODS

Our retrospective study took 1142 US images from 328 patients from January 2019 to June 2021. Two tasks were proposed based on US images. Task 1 was to classify benign and high-grade serous carcinoma in original ovarian tumor US images, in which benign ovarian tumor was divided into six classes: mature cystic teratoma, endometriotic cyst, serous cystadenoma, granulosa-theca cell tumor, mucinous cystadenoma and simple cyst. The US images in task 2 were segmented. Deep convolutional neural networks (DCNN) were applied to classify different types of ovarian tumors in detail. We used transfer learning on six pre-trained DCNNs: VGG16, GoogleNet, ResNet34, ResNext50, DensNet121 and DensNet201. Several metrics were adopted to assess the model performance: accuracy, sensitivity, specificity, FI-score and the area under the receiver operating characteristic curve (AUC).

RESULTS

The DCNN performed better in labeled US images than in original US images. The best predictive performance came from the ResNext50 model. The model had an overall accuracy of 0.952 for in directly classifying the seven histologic types of ovarian tumors. It achieved a sensitivity of 90% and a specificity of 99.2% for high-grade serous carcinoma, and a sensitivity of over 90% and a specificity of over 95% in most benign pathological categories.

CONCLUSION

DCNN is a promising technique for classifying different histologic types of ovarian tumors in US images, and provide valuable computer-aided information.

摘要

目的

本研究旨在评估和验证深度卷积神经网络在超声(US)图像中鉴别不同组织学类型卵巢肿瘤时的性能。

材料与方法

我们的回顾性研究收集了2019年1月至2021年6月期间328例患者的1142张US图像。基于US图像提出了两项任务。任务1是在原始卵巢肿瘤US图像中对良性和高级别浆液性癌进行分类,其中良性卵巢肿瘤分为六类:成熟囊性畸胎瘤、子宫内膜异位囊肿、浆液性囊腺瘤、颗粒-卵泡膜细胞瘤、黏液性囊腺瘤和单纯囊肿。任务2中的US图像进行了分割。应用深度卷积神经网络(DCNN)详细分类不同类型的卵巢肿瘤。我们在六个预训练的DCNN上使用了迁移学习:VGG16、GoogleNet、ResNet34、ResNext50、DensNet121和DensNet201。采用了几种指标来评估模型性能:准确率、敏感性、特异性、F1分数和受试者操作特征曲线下面积(AUC)。

结果

DCNN在标记的US图像中的表现优于原始US图像。最佳预测性能来自ResNext50模型。该模型在直接分类七种组织学类型的卵巢肿瘤时总体准确率为0.952。对于高级别浆液性癌,其敏感性为90%,特异性为99.2%,在大多数良性病理类别中敏感性超过90%,特异性超过95%。

结论

DCNN是一种有前途的技术,可用于在US图像中分类不同组织学类型的卵巢肿瘤,并提供有价值的计算机辅助信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ad5f/10326903/fbcb70d96cab/fonc-13-1154200-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验