Suppr超能文献

人工智能副驾:基于内容的图像检索在胸部 CT 读罕见病中的应用。

AI co-pilot: content-based image retrieval for the reading of rare diseases in chest CT.

机构信息

Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Hufelandstraße 55, 45147, Essen, Germany.

Institute of Artificial Intelligence in Medicine, University Hospital Essen, Hufelandstraße 55, 45147, Essen, Germany.

出版信息

Sci Rep. 2023 Mar 16;13(1):4336. doi: 10.1038/s41598-023-29949-3.

Abstract

The aim of the study was to evaluate the impact of the newly developed Similar patient search (SPS) Web Service, which supports reading complex lung diseases in computed tomography (CT), on the diagnostic accuracy of residents. SPS is an image-based search engine for pre-diagnosed cases along with related clinical reference content ( https://eref.thieme.de ). The reference database was constructed using 13,658 annotated regions of interest (ROIs) from 621 patients, comprising 69 lung diseases. For validation, 50 CT scans were evaluated by five radiology residents without SPS, and three months later with SPS. The residents could give a maximum of three diagnoses per case. A maximum of 3 points was achieved if the correct diagnosis without any additional diagnoses was provided. The residents achieved an average score of 17.6 ± 5.0 points without SPS. By using SPS, the residents increased their score by 81.8% to 32.0 ± 9.5 points. The improvement of the score per case was highly significant (p = 0.0001). The residents required an average of 205.9 ± 350.6 s per case (21.9% increase) when SPS was used. However, in the second half of the cases, after the residents became more familiar with SPS, this increase dropped to 7%. Residents' average score in reading complex chest CT scans improved by 81.8% when the AI-driven SPS with integrated clinical reference content was used. The increase in time per case due to the use of the SPS was minimal.

摘要

这项研究的目的是评估新开发的相似患者搜索(SPS)网络服务对住院医师诊断准确性的影响。SPS 是一个基于图像的搜索引擎,可搜索已诊断病例以及相关的临床参考内容(https://eref.thieme.de)。参考数据库是使用 621 名患者的 13658 个标注感兴趣区域(ROI)构建的,包括 69 种肺部疾病。为了验证,有 50 名放射科住院医师在没有 SPS 的情况下评估了 50 份 CT 扫描,三个月后使用 SPS 进行评估。每位住院医师最多可对每个病例给出三个诊断。如果只提供正确的诊断而没有任何额外的诊断,则可获得 3 分。在没有 SPS 的情况下,住院医师的平均得分为 17.6±5.0 分。通过使用 SPS,住院医师的得分提高了 81.8%,达到 32.0±9.5 分。病例得分的提高具有高度显著性(p=0.0001)。使用 SPS 时,每位住院医师每个病例的平均用时增加了 205.9±350.6 秒(增加了 21.9%)。然而,在病例的后半部分,当住院医师对 SPS 更加熟悉后,这一增长降至 7%。当使用集成临床参考内容的 AI 驱动的 SPS 时,住院医师阅读复杂胸部 CT 扫描的平均得分提高了 81.8%。使用 SPS 导致每个病例的用时增加很少。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e26b/10020154/faa10a5e3c08/41598_2023_29949_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验