Suppr超能文献

基于低秩的 MR 肿瘤脑图像多图谱分割。

Multi-Atlas Segmentation of MR Tumor Brain Images Using Low-Rank Based Image Recovery.

出版信息

IEEE Trans Med Imaging. 2018 Oct;37(10):2224-2235. doi: 10.1109/TMI.2018.2824243. Epub 2018 Apr 6.

Abstract

We introduce a new multi-atlas segmentation (MAS) framework for MR tumor brain images. The basic idea of MAS is to register and fuse label information from multiple normal brain atlases to a new brain image for segmentation. Many MAS methods have been proposed with success. However, most of them are developed for normal brain images, and tumor brain images usually pose a great challenge for them. This is because tumors cause difficulties in registration of normal brain atlases to the tumor brain image. To address this challenge, in the first step of our MAS framework, a new low-rank method is used to get the recovered image of normal-looking brain from the MR tumor brain image based on the information of normal brain atlases. Different from conventional low-rank methods that produce the recovered image with distorted normal brain regions, our low-rank method harnesses a spatial constraint to get the recovered image with preserved normal brain regions. Then in the second step, normal brain atlases can be registered to the recovered image without influence from tumors. These two steps are iteratively proceeded until convergence, for obtaining the final segmentation of the tumor brain image. During the iteration, both the recovered image and the registration of normal brain atlases to the recovered image are gradually refined. We have compared our proposed method with state-of-the-art methods by using both synthetic and real MR tumor brain images. Experimental results show that our proposed method can get effectively recovered images and also improves segmentation accuracy.

摘要

我们介绍了一种新的磁共振肿瘤脑图像多图谱分割(MAS)框架。MAS 的基本思想是将来自多个正常脑图谱的标签信息注册和融合到新的脑图像中进行分割。已经提出了许多 MAS 方法,并取得了成功。然而,大多数方法都是针对正常脑图像开发的,而肿瘤脑图像通常对它们构成了很大的挑战。这是因为肿瘤导致正常脑图谱向肿瘤脑图像的配准变得困难。为了解决这个挑战,在我们的 MAS 框架的第一步中,使用一种新的低秩方法,基于正常脑图谱的信息,从磁共振肿瘤脑图像中获取正常外观脑的恢复图像。与产生具有扭曲正常脑区域的恢复图像的常规低秩方法不同,我们的低秩方法利用空间约束来获取具有保留正常脑区域的恢复图像。然后,在第二步中,可以在不受肿瘤影响的情况下将正常脑图谱注册到恢复图像上。这两个步骤会迭代进行,直到收敛,从而得到肿瘤脑图像的最终分割。在迭代过程中,恢复图像和正常脑图谱向恢复图像的注册都会逐渐得到改进。我们使用合成和真实的磁共振肿瘤脑图像,将我们提出的方法与最先进的方法进行了比较。实验结果表明,我们提出的方法可以有效地获取恢复图像,并提高分割精度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6965/6176916/144ab5b4c32d/nihms-988252-f0001.jpg

相似文献

1
Multi-Atlas Segmentation of MR Tumor Brain Images Using Low-Rank Based Image Recovery.基于低秩的 MR 肿瘤脑图像多图谱分割。
IEEE Trans Med Imaging. 2018 Oct;37(10):2224-2235. doi: 10.1109/TMI.2018.2824243. Epub 2018 Apr 6.
3
Groupwise registration of MR brain images with tumors.带有肿瘤的磁共振脑图像的逐组配准。
Phys Med Biol. 2017 Aug 4;62(17):6853-6868. doi: 10.1088/1361-6560/aa7c41.
6

引用本文的文献

1
Unsupervised deep learning registration model for multimodal brain images.无监督深度学习的多模态脑图像配准模型。
J Appl Clin Med Phys. 2023 Nov;24(11):e14177. doi: 10.1002/acm2.14177. Epub 2023 Oct 12.
2
Integrated 3d flow-based multi-atlas brain structure segmentation.基于集成 3D 流的多图谱脑结构分割。
PLoS One. 2022 Aug 15;17(8):e0270339. doi: 10.1371/journal.pone.0270339. eCollection 2022.
3
A Segmentation Method of Foramen Ovale Based on Multiatlas.基于多图谱的卵圆孔分割方法。
Comput Math Methods Med. 2021 Sep 20;2021:5221111. doi: 10.1155/2021/5221111. eCollection 2021.
5
[A tissue recovery-based brain tumor image registration method].一种基于组织恢复的脑肿瘤图像配准方法
Nan Fang Yi Ke Da Xue Xue Bao. 2021 Feb 25;41(2):292-298. doi: 10.12122/j.issn.1673-4254.2021.02.19.
9
Adversarial learning for mono- or multi-modal registration.对抗学习的单模态或多模态配准。
Med Image Anal. 2019 Dec;58:101545. doi: 10.1016/j.media.2019.101545. Epub 2019 Aug 24.

本文引用的文献

1
Connectome analysis for pre-operative brain mapping in neurosurgery.神经外科手术术前脑图谱的连接组分析
Br J Neurosurg. 2016 Oct;30(5):506-17. doi: 10.1080/02688697.2016.1208809. Epub 2016 Jul 22.
4
Low-Rank Atlas Image Analyses in the Presence of Pathologies.存在病变情况下的低秩图谱图像分析
IEEE Trans Med Imaging. 2015 Dec;34(12):2583-91. doi: 10.1109/TMI.2015.2448556. Epub 2015 Jun 22.
5
The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS).多模态脑肿瘤图像分割基准(BRATS)。
IEEE Trans Med Imaging. 2015 Oct;34(10):1993-2024. doi: 10.1109/TMI.2014.2377694. Epub 2014 Dec 4.
7
Low-rank to the rescue - atlas-based analyses in the presence of pathologies.低秩来救援——存在病变时基于图谱的分析
Med Image Comput Comput Assist Interv. 2014;17(Pt 3):97-104. doi: 10.1007/978-3-319-10443-0_13.
8
Compressive sensing via nonlocal low-rank regularization.基于非局部低秩正则化的压缩感知。
IEEE Trans Image Process. 2014 Aug;23(8):3618-32. doi: 10.1109/TIP.2014.2329449. Epub 2014 Jun 6.
9
Learning to rank atlases for multiple-atlas segmentation.学习为多图谱分割对图谱进行排序。
IEEE Trans Med Imaging. 2014 Oct;33(10):1939-53. doi: 10.1109/TMI.2014.2327516. Epub 2014 May 30.
10
Multiatlas segmentation as nonparametric regression.多图谱分割作为非参数回归
IEEE Trans Med Imaging. 2014 Sep;33(9):1803-17. doi: 10.1109/TMI.2014.2321281. Epub 2014 Apr 30.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验